An Adaptive Channel Selection and Graph ResNet Based Algorithm for Motor Imagery Classification

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS
Yongquan Xia, Jianhua Dong, Duan Li, Kuan-Ching Li, J. Nan, Ruyun Xu
{"title":"An Adaptive Channel Selection and Graph ResNet Based Algorithm for Motor Imagery Classification","authors":"Yongquan Xia, Jianhua Dong, Duan Li, Kuan-Ching Li, J. Nan, Ruyun Xu","doi":"10.14569/ijacsa.2023.0140525","DOIUrl":null,"url":null,"abstract":"—In Brain-Computer interface (BCI) applications, achieving accurate control relies heavily on the classification accuracy and efficiency of motor imagery electroencephalogram (EEG) signals. However, factors such as mutual interference between multi-channel signals, inter-individual variability, and noise interference in the channels pose challenges to motor imagery EEG signal classification. To address these problems, this paper proposes an Adaptive Channel Selection algorithm aimed at optimizing classification accuracy and Information Translate Rate (ITR). First, C3, C4, and Cz are selected as key channels based on neurophysiological evidence and extensive experimental studies. Next, the channel selection is fine-tuned using spatial location and absolute Pearson correlation coefficients. By analyzing the relationship between EEG channels and key channels, the most relevant channel combination is determined for each subject, reducing confounding information and improving classification accuracy. To validate the method, the SHU Dataset and the PhysioNet Dataset are used in experiments. The Graph ResNet classification model is employed to extract features from the selected channel combinations using deep learning techniques. Experimental results show that the average classification accuracy is improved by 5.36% and 9.19%, and the Information Translate Rate is improved by 29.24% and 26.75%, respectively, compared to a single channel combination.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"8 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

—In Brain-Computer interface (BCI) applications, achieving accurate control relies heavily on the classification accuracy and efficiency of motor imagery electroencephalogram (EEG) signals. However, factors such as mutual interference between multi-channel signals, inter-individual variability, and noise interference in the channels pose challenges to motor imagery EEG signal classification. To address these problems, this paper proposes an Adaptive Channel Selection algorithm aimed at optimizing classification accuracy and Information Translate Rate (ITR). First, C3, C4, and Cz are selected as key channels based on neurophysiological evidence and extensive experimental studies. Next, the channel selection is fine-tuned using spatial location and absolute Pearson correlation coefficients. By analyzing the relationship between EEG channels and key channels, the most relevant channel combination is determined for each subject, reducing confounding information and improving classification accuracy. To validate the method, the SHU Dataset and the PhysioNet Dataset are used in experiments. The Graph ResNet classification model is employed to extract features from the selected channel combinations using deep learning techniques. Experimental results show that the average classification accuracy is improved by 5.36% and 9.19%, and the Information Translate Rate is improved by 29.24% and 26.75%, respectively, compared to a single channel combination.
一种自适应通道选择和基于图形ResNet的运动图像分类算法
在脑机接口(BCI)应用中,实现精确控制在很大程度上依赖于运动图像脑电图(EEG)信号分类的准确性和效率。然而,多通道信号之间的相互干扰、个体间的差异性以及通道内的噪声干扰等因素对运动图像脑电信号的分类提出了挑战。为了解决这些问题,本文提出了一种旨在优化分类精度和信息翻译率(ITR)的自适应信道选择算法。首先,根据神经生理学证据和广泛的实验研究,选择C3、C4和Cz作为关键通道。接下来,使用空间位置和绝对Pearson相关系数对信道选择进行微调。通过分析脑电通道与关键通道之间的关系,为每个受试者确定最相关的通道组合,减少混杂信息,提高分类精度。为了验证该方法的有效性,使用SHU数据集和PhysioNet数据集进行了实验。采用Graph ResNet分类模型,利用深度学习技术从选择的通道组合中提取特征。实验结果表明,与单通道组合相比,平均分类准确率分别提高了5.36%和9.19%,信息翻译率分别提高了29.24%和26.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信