On Predicting and Analyzing Breast Cancer using Data Mining Approach

Masud Rana Basunia, Ismot Ara Pervin, Md. Al Mahmud, S. Saha, M. Arifuzzaman
{"title":"On Predicting and Analyzing Breast Cancer using Data Mining Approach","authors":"Masud Rana Basunia, Ismot Ara Pervin, Md. Al Mahmud, S. Saha, M. Arifuzzaman","doi":"10.1109/TENSYMP50017.2020.9230871","DOIUrl":null,"url":null,"abstract":"The highest invading cancer among the women is breast cancer. Early detection of breast cancer is the higher chance of the patient being treated. In this study, we have proposed an ensemble method named stacking classifier which combines multiple classification techniques and efficaciously classifies the benign and malignant tumor. “Wisconsin Diagnosis Breast Cancer” dataset culled from the UC Irvine Machine Learning Repository has been used for our experiment. We applied different classification techniques over the dataset and tuned their parameters to improve accuracy. We chose the three best classifiers for our proposed method. Generally, our proposed Stacking classifier combined the results of those best classifiers using meta classifier and provided 97.20% accuracy for breast cancer prediction. Performance of different data mining approaches have been evaluated rigorously through different evaluation metrics.","PeriodicalId":6721,"journal":{"name":"2020 IEEE Region 10 Symposium (TENSYMP)","volume":"1 1","pages":"1257-1260"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP50017.2020.9230871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The highest invading cancer among the women is breast cancer. Early detection of breast cancer is the higher chance of the patient being treated. In this study, we have proposed an ensemble method named stacking classifier which combines multiple classification techniques and efficaciously classifies the benign and malignant tumor. “Wisconsin Diagnosis Breast Cancer” dataset culled from the UC Irvine Machine Learning Repository has been used for our experiment. We applied different classification techniques over the dataset and tuned their parameters to improve accuracy. We chose the three best classifiers for our proposed method. Generally, our proposed Stacking classifier combined the results of those best classifiers using meta classifier and provided 97.20% accuracy for breast cancer prediction. Performance of different data mining approaches have been evaluated rigorously through different evaluation metrics.
基于数据挖掘方法的乳腺癌预测与分析
女性中发病率最高的癌症是乳腺癌。早期发现乳腺癌患者接受治疗的机会就越大。在本研究中,我们提出了一种集成方法,即堆叠分类器,它结合了多种分类技术,有效地对良恶性肿瘤进行了分类。我们的实验使用了从加州大学欧文分校机器学习存储库中挑选的“威斯康星诊断乳腺癌”数据集。我们在数据集上应用了不同的分类技术,并调整了它们的参数以提高准确性。我们为我们提出的方法选择了三个最好的分类器。总的来说,我们提出的堆叠分类器将这些最佳分类器的结果结合使用元分类器,对乳腺癌的预测准确率为97.20%。通过不同的评价指标对不同数据挖掘方法的性能进行了严格的评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信