Single-layer “domino” diodes via optofluidic lithography for ultra-low Reynolds number applications

R. Sochol, C. Glick, K. Lee, T. Brubaker, A. Lu, M. Wah, S. Gao, E. Hicks, K. T. Wolf, K. Iwai, L. P. Lee, L. Lin
{"title":"Single-layer “domino” diodes via optofluidic lithography for ultra-low Reynolds number applications","authors":"R. Sochol, C. Glick, K. Lee, T. Brubaker, A. Lu, M. Wah, S. Gao, E. Hicks, K. T. Wolf, K. Iwai, L. P. Lee, L. Lin","doi":"10.1109/MEMSYS.2013.6474200","DOIUrl":null,"url":null,"abstract":"Autonomous fluidic components are critical to the advancement of integrated micro/nanofluidic circuitry for lab-on-a-chip applications, such as point-of-care (POC) molecular diagnostics and on-site chemical detection. Previously, a wide range of self-regulating microfluidic components, such as fluidic diodes, have been developed; however, achieving effective functionality at ultra-low Reynolds number (e.g., Re <; 0.05) has remained a significant challenge. To overcome this issue, here we introduce single-layer microfluidic “domino” diodes, which utilize free-standing rotational microstructures - constructed in situ via optofluidic lithography - in order to passively regulate the fluidic resistance based on the flow polarity, thereby enabling flow rectification under ultra-low Re conditions. COMSOL simulation results revealed a theoretical Diodicity (Di) of 31 for a singular domino diode component. Experimental results (for systems with four microstructures) revealed Di's ranging from 13.0±1.9 to 25.4±1.9 corresponding to 0.025 <; Re <; 0.030 and 0.010 <; Re <; 0.015 flow, respectively, which represent the largest Di's reported for Re <; 0.05 fluid flow.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Autonomous fluidic components are critical to the advancement of integrated micro/nanofluidic circuitry for lab-on-a-chip applications, such as point-of-care (POC) molecular diagnostics and on-site chemical detection. Previously, a wide range of self-regulating microfluidic components, such as fluidic diodes, have been developed; however, achieving effective functionality at ultra-low Reynolds number (e.g., Re <; 0.05) has remained a significant challenge. To overcome this issue, here we introduce single-layer microfluidic “domino” diodes, which utilize free-standing rotational microstructures - constructed in situ via optofluidic lithography - in order to passively regulate the fluidic resistance based on the flow polarity, thereby enabling flow rectification under ultra-low Re conditions. COMSOL simulation results revealed a theoretical Diodicity (Di) of 31 for a singular domino diode component. Experimental results (for systems with four microstructures) revealed Di's ranging from 13.0±1.9 to 25.4±1.9 corresponding to 0.025 <; Re <; 0.030 and 0.010 <; Re <; 0.015 flow, respectively, which represent the largest Di's reported for Re <; 0.05 fluid flow.
单层“多米诺骨牌”二极管通过光流光刻超低雷诺数的应用
自主流体元件对于集成微/纳米流体电路的进步至关重要,用于芯片上的实验室应用,如护理点(POC)分子诊断和现场化学检测。在此之前,已经开发了各种自调节微流控元件,如流控二极管;然而,在超低雷诺数(例如,Re <;0.05)仍然是一个重大挑战。为了克服这个问题,我们引入了单层微流控“多米诺骨牌”二极管,它利用独立的旋转微结构-通过光流光刻技术原位构建-以被动调节基于流动极性的流体阻力,从而实现超低Re条件下的流动整流。COMSOL仿真结果表明,单个多米诺二极管组件的理论二极管度(Di)为31。实验结果表明(对于具有四种微观结构的体系),Di的范围为13.0±1.9 ~ 25.4±1.9,对应于0.025 <;Re <;0.030和0.010 <;Re <;分别为0.015流量,这代表了Re <;0.05流体流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信