Infinite lifting of an action of symplectomorphism group on the set of bi-Lagrangian structures

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Bertuel Tangue Ndawa
{"title":"Infinite lifting of an action of symplectomorphism group on the set of bi-Lagrangian structures","authors":"Bertuel Tangue Ndawa","doi":"10.3934/jgm.2022006","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We consider a smooth <inline-formula><tex-math id=\"M1\">\\begin{document}$ 2n $\\end{document}</tex-math></inline-formula>-manifold <inline-formula><tex-math id=\"M2\">\\begin{document}$ M $\\end{document}</tex-math></inline-formula> endowed with a bi-Lagrangian structure <inline-formula><tex-math id=\"M3\">\\begin{document}$ (\\omega,\\mathcal{F}_{1},\\mathcal{F}_{2}) $\\end{document}</tex-math></inline-formula>. That is, <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\omega $\\end{document}</tex-math></inline-formula> is a symplectic form and <inline-formula><tex-math id=\"M5\">\\begin{document}$ (\\mathcal{F}_{1},\\mathcal{F}_{2}) $\\end{document}</tex-math></inline-formula> is a pair of transversal Lagrangian foliations on <inline-formula><tex-math id=\"M6\">\\begin{document}$ (M, \\omega) $\\end{document}</tex-math></inline-formula>. Such a structure has an important geometric object called the Hess Connection. Among the many importance of Hess connections, they allow to classify affine bi-Lagrangian structures.</p><p style='text-indent:20px;'>In this work, we show that a bi-Lagrangian structure on <inline-formula><tex-math id=\"M7\">\\begin{document}$ M $\\end{document}</tex-math></inline-formula> can be lifted as a bi-Lagrangian structure on its trivial bundle <inline-formula><tex-math id=\"M8\">\\begin{document}$ M\\times\\mathbb{R}^n $\\end{document}</tex-math></inline-formula>. Moreover, the lifting of an affine bi-Lagrangian structure is also affine. We define a dynamic on the symplectomorphism group and the set of bi-Lagrangian structures (that is an action of the symplectomorphism group on the set of bi-Lagrangian structures). This dynamic is compatible with Hess connections, preserves affine bi-Lagrangian structures, and can be lifted on <inline-formula><tex-math id=\"M9\">\\begin{document}$ M\\times\\mathbb{R}^n $\\end{document}</tex-math></inline-formula>. This lifting can be lifted again on <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\left(M\\times\\mathbb{R}^{2n}\\right)\\times\\mathbb{R}^{4n} $\\end{document}</tex-math></inline-formula>, and coincides with the initial dynamic (in our sense) on <inline-formula><tex-math id=\"M11\">\\begin{document}$ M\\times\\mathbb{R}^n $\\end{document}</tex-math></inline-formula>. By replacing <inline-formula><tex-math id=\"M12\">\\begin{document}$ M\\times\\mathbb{R}^{2n} $\\end{document}</tex-math></inline-formula> with the tangent bundle <inline-formula><tex-math id=\"M13\">\\begin{document}$ TM $\\end{document}</tex-math></inline-formula> or cotangent bundle <inline-formula><tex-math id=\"M14\">\\begin{document}$ T^{*}M $\\end{document}</tex-math></inline-formula> of <inline-formula><tex-math id=\"M15\">\\begin{document}$ M $\\end{document}</tex-math></inline-formula>, results still hold when <inline-formula><tex-math id=\"M16\">\\begin{document}$ M $\\end{document}</tex-math></inline-formula> is parallelizable.</p>","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"9 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2022006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a smooth \begin{document}$ 2n $\end{document}-manifold \begin{document}$ M $\end{document} endowed with a bi-Lagrangian structure \begin{document}$ (\omega,\mathcal{F}_{1},\mathcal{F}_{2}) $\end{document}. That is, \begin{document}$ \omega $\end{document} is a symplectic form and \begin{document}$ (\mathcal{F}_{1},\mathcal{F}_{2}) $\end{document} is a pair of transversal Lagrangian foliations on \begin{document}$ (M, \omega) $\end{document}. Such a structure has an important geometric object called the Hess Connection. Among the many importance of Hess connections, they allow to classify affine bi-Lagrangian structures.

In this work, we show that a bi-Lagrangian structure on \begin{document}$ M $\end{document} can be lifted as a bi-Lagrangian structure on its trivial bundle \begin{document}$ M\times\mathbb{R}^n $\end{document}. Moreover, the lifting of an affine bi-Lagrangian structure is also affine. We define a dynamic on the symplectomorphism group and the set of bi-Lagrangian structures (that is an action of the symplectomorphism group on the set of bi-Lagrangian structures). This dynamic is compatible with Hess connections, preserves affine bi-Lagrangian structures, and can be lifted on \begin{document}$ M\times\mathbb{R}^n $\end{document}. This lifting can be lifted again on \begin{document}$ \left(M\times\mathbb{R}^{2n}\right)\times\mathbb{R}^{4n} $\end{document}, and coincides with the initial dynamic (in our sense) on \begin{document}$ M\times\mathbb{R}^n $\end{document}. By replacing \begin{document}$ M\times\mathbb{R}^{2n} $\end{document} with the tangent bundle \begin{document}$ TM $\end{document} or cotangent bundle \begin{document}$ T^{*}M $\end{document} of \begin{document}$ M $\end{document}, results still hold when \begin{document}$ M $\end{document} is parallelizable.

双拉格朗日结构集上复形群作用的无限提升
We consider a smooth \begin{document}$ 2n $\end{document}-manifold \begin{document}$ M $\end{document} endowed with a bi-Lagrangian structure \begin{document}$ (\omega,\mathcal{F}_{1},\mathcal{F}_{2}) $\end{document}. That is, \begin{document}$ \omega $\end{document} is a symplectic form and \begin{document}$ (\mathcal{F}_{1},\mathcal{F}_{2}) $\end{document} is a pair of transversal Lagrangian foliations on \begin{document}$ (M, \omega) $\end{document}. Such a structure has an important geometric object called the Hess Connection. Among the many importance of Hess connections, they allow to classify affine bi-Lagrangian structures.In this work, we show that a bi-Lagrangian structure on \begin{document}$ M $\end{document} can be lifted as a bi-Lagrangian structure on its trivial bundle \begin{document}$ M\times\mathbb{R}^n $\end{document}. Moreover, the lifting of an affine bi-Lagrangian structure is also affine. We define a dynamic on the symplectomorphism group and the set of bi-Lagrangian structures (that is an action of the symplectomorphism group on the set of bi-Lagrangian structures). This dynamic is compatible with Hess connections, preserves affine bi-Lagrangian structures, and can be lifted on \begin{document}$ M\times\mathbb{R}^n $\end{document}. This lifting can be lifted again on \begin{document}$ \left(M\times\mathbb{R}^{2n}\right)\times\mathbb{R}^{4n} $\end{document}, and coincides with the initial dynamic (in our sense) on \begin{document}$ M\times\mathbb{R}^n $\end{document}. By replacing \begin{document}$ M\times\mathbb{R}^{2n} $\end{document} with the tangent bundle \begin{document}$ TM $\end{document} or cotangent bundle \begin{document}$ T^{*}M $\end{document} of \begin{document}$ M $\end{document}, results still hold when \begin{document}$ M $\end{document} is parallelizable.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信