{"title":"Infinite lifting of an action of symplectomorphism group on the set of bi-Lagrangian structures","authors":"Bertuel Tangue Ndawa","doi":"10.3934/jgm.2022006","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We consider a smooth <inline-formula><tex-math id=\"M1\">\\begin{document}$ 2n $\\end{document}</tex-math></inline-formula>-manifold <inline-formula><tex-math id=\"M2\">\\begin{document}$ M $\\end{document}</tex-math></inline-formula> endowed with a bi-Lagrangian structure <inline-formula><tex-math id=\"M3\">\\begin{document}$ (\\omega,\\mathcal{F}_{1},\\mathcal{F}_{2}) $\\end{document}</tex-math></inline-formula>. That is, <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\omega $\\end{document}</tex-math></inline-formula> is a symplectic form and <inline-formula><tex-math id=\"M5\">\\begin{document}$ (\\mathcal{F}_{1},\\mathcal{F}_{2}) $\\end{document}</tex-math></inline-formula> is a pair of transversal Lagrangian foliations on <inline-formula><tex-math id=\"M6\">\\begin{document}$ (M, \\omega) $\\end{document}</tex-math></inline-formula>. Such a structure has an important geometric object called the Hess Connection. Among the many importance of Hess connections, they allow to classify affine bi-Lagrangian structures.</p><p style='text-indent:20px;'>In this work, we show that a bi-Lagrangian structure on <inline-formula><tex-math id=\"M7\">\\begin{document}$ M $\\end{document}</tex-math></inline-formula> can be lifted as a bi-Lagrangian structure on its trivial bundle <inline-formula><tex-math id=\"M8\">\\begin{document}$ M\\times\\mathbb{R}^n $\\end{document}</tex-math></inline-formula>. Moreover, the lifting of an affine bi-Lagrangian structure is also affine. We define a dynamic on the symplectomorphism group and the set of bi-Lagrangian structures (that is an action of the symplectomorphism group on the set of bi-Lagrangian structures). This dynamic is compatible with Hess connections, preserves affine bi-Lagrangian structures, and can be lifted on <inline-formula><tex-math id=\"M9\">\\begin{document}$ M\\times\\mathbb{R}^n $\\end{document}</tex-math></inline-formula>. This lifting can be lifted again on <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\left(M\\times\\mathbb{R}^{2n}\\right)\\times\\mathbb{R}^{4n} $\\end{document}</tex-math></inline-formula>, and coincides with the initial dynamic (in our sense) on <inline-formula><tex-math id=\"M11\">\\begin{document}$ M\\times\\mathbb{R}^n $\\end{document}</tex-math></inline-formula>. By replacing <inline-formula><tex-math id=\"M12\">\\begin{document}$ M\\times\\mathbb{R}^{2n} $\\end{document}</tex-math></inline-formula> with the tangent bundle <inline-formula><tex-math id=\"M13\">\\begin{document}$ TM $\\end{document}</tex-math></inline-formula> or cotangent bundle <inline-formula><tex-math id=\"M14\">\\begin{document}$ T^{*}M $\\end{document}</tex-math></inline-formula> of <inline-formula><tex-math id=\"M15\">\\begin{document}$ M $\\end{document}</tex-math></inline-formula>, results still hold when <inline-formula><tex-math id=\"M16\">\\begin{document}$ M $\\end{document}</tex-math></inline-formula> is parallelizable.</p>","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"9 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2022006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
We consider a smooth \begin{document}$ 2n $\end{document}-manifold \begin{document}$ M $\end{document} endowed with a bi-Lagrangian structure \begin{document}$ (\omega,\mathcal{F}_{1},\mathcal{F}_{2}) $\end{document}. That is, \begin{document}$ \omega $\end{document} is a symplectic form and \begin{document}$ (\mathcal{F}_{1},\mathcal{F}_{2}) $\end{document} is a pair of transversal Lagrangian foliations on \begin{document}$ (M, \omega) $\end{document}. Such a structure has an important geometric object called the Hess Connection. Among the many importance of Hess connections, they allow to classify affine bi-Lagrangian structures.
In this work, we show that a bi-Lagrangian structure on \begin{document}$ M $\end{document} can be lifted as a bi-Lagrangian structure on its trivial bundle \begin{document}$ M\times\mathbb{R}^n $\end{document}. Moreover, the lifting of an affine bi-Lagrangian structure is also affine. We define a dynamic on the symplectomorphism group and the set of bi-Lagrangian structures (that is an action of the symplectomorphism group on the set of bi-Lagrangian structures). This dynamic is compatible with Hess connections, preserves affine bi-Lagrangian structures, and can be lifted on \begin{document}$ M\times\mathbb{R}^n $\end{document}. This lifting can be lifted again on \begin{document}$ \left(M\times\mathbb{R}^{2n}\right)\times\mathbb{R}^{4n} $\end{document}, and coincides with the initial dynamic (in our sense) on \begin{document}$ M\times\mathbb{R}^n $\end{document}. By replacing \begin{document}$ M\times\mathbb{R}^{2n} $\end{document} with the tangent bundle \begin{document}$ TM $\end{document} or cotangent bundle \begin{document}$ T^{*}M $\end{document} of \begin{document}$ M $\end{document}, results still hold when \begin{document}$ M $\end{document} is parallelizable.
We consider a smooth \begin{document}$ 2n $\end{document}-manifold \begin{document}$ M $\end{document} endowed with a bi-Lagrangian structure \begin{document}$ (\omega,\mathcal{F}_{1},\mathcal{F}_{2}) $\end{document}. That is, \begin{document}$ \omega $\end{document} is a symplectic form and \begin{document}$ (\mathcal{F}_{1},\mathcal{F}_{2}) $\end{document} is a pair of transversal Lagrangian foliations on \begin{document}$ (M, \omega) $\end{document}. Such a structure has an important geometric object called the Hess Connection. Among the many importance of Hess connections, they allow to classify affine bi-Lagrangian structures.In this work, we show that a bi-Lagrangian structure on \begin{document}$ M $\end{document} can be lifted as a bi-Lagrangian structure on its trivial bundle \begin{document}$ M\times\mathbb{R}^n $\end{document}. Moreover, the lifting of an affine bi-Lagrangian structure is also affine. We define a dynamic on the symplectomorphism group and the set of bi-Lagrangian structures (that is an action of the symplectomorphism group on the set of bi-Lagrangian structures). This dynamic is compatible with Hess connections, preserves affine bi-Lagrangian structures, and can be lifted on \begin{document}$ M\times\mathbb{R}^n $\end{document}. This lifting can be lifted again on \begin{document}$ \left(M\times\mathbb{R}^{2n}\right)\times\mathbb{R}^{4n} $\end{document}, and coincides with the initial dynamic (in our sense) on \begin{document}$ M\times\mathbb{R}^n $\end{document}. By replacing \begin{document}$ M\times\mathbb{R}^{2n} $\end{document} with the tangent bundle \begin{document}$ TM $\end{document} or cotangent bundle \begin{document}$ T^{*}M $\end{document} of \begin{document}$ M $\end{document}, results still hold when \begin{document}$ M $\end{document} is parallelizable.
期刊介绍:
The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:
1. Lagrangian and Hamiltonian mechanics
2. Symplectic and Poisson geometry and their applications to mechanics
3. Geometric and optimal control theory
4. Geometric and variational integration
5. Geometry of stochastic systems
6. Geometric methods in dynamical systems
7. Continuum mechanics
8. Classical field theory
9. Fluid mechanics
10. Infinite-dimensional dynamical systems
11. Quantum mechanics and quantum information theory
12. Applications in physics, technology, engineering and the biological sciences.