A Mosquito-Eye-Like Superhydrophobic Coating with Super Robustness against Abrasion

Jie Liu, Xinwen Zhang, Ruoyu Wanga, Fei Long, Peng Zhao, Lei Liu
{"title":"A Mosquito-Eye-Like Superhydrophobic Coating with Super Robustness against Abrasion","authors":"Jie Liu, Xinwen Zhang, Ruoyu Wanga, Fei Long, Peng Zhao, Lei Liu","doi":"10.2139/ssrn.3805218","DOIUrl":null,"url":null,"abstract":"Abstract Superhydrophobic coatings can offer promising protection for metals against harsh service conditions. However, real applications are facing great challenges with the focus problem of lacking mechanical robustness. Current methods addressing this issue can not completely solve the problem or is not unsuitable for large-scale applications. Here, we propose an innovative strategy to fabricate a bioinspired superhydrophobic coating on 6061 Al via a simple and high-output route. By creating a mosquito-eye-like nanoframework-nanofiller structure with two different length scales, the coating is equipped with superhydrophobic property and excellent mechanical robustness, which are usually considered as two mutually exclusive properties. Based on a modified Cassie-Baxter model and a Gibbs interfacial energy model, a wetting theory is established to analyze the observed nonlinear change of the water contact angle, which suggests that the coating initially remains in the heterogeneous wetting state and abruptly transits to the intermediate wetting state. The theory further predicts the loss of anti-icing property upon abrasion, which is also confirmed by experiments. The superhydrophobic coating with robustness against abrasion will find its potential application values in complex service conditions.","PeriodicalId":18268,"journal":{"name":"Materials Engineering eJournal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3805218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Abstract Superhydrophobic coatings can offer promising protection for metals against harsh service conditions. However, real applications are facing great challenges with the focus problem of lacking mechanical robustness. Current methods addressing this issue can not completely solve the problem or is not unsuitable for large-scale applications. Here, we propose an innovative strategy to fabricate a bioinspired superhydrophobic coating on 6061 Al via a simple and high-output route. By creating a mosquito-eye-like nanoframework-nanofiller structure with two different length scales, the coating is equipped with superhydrophobic property and excellent mechanical robustness, which are usually considered as two mutually exclusive properties. Based on a modified Cassie-Baxter model and a Gibbs interfacial energy model, a wetting theory is established to analyze the observed nonlinear change of the water contact angle, which suggests that the coating initially remains in the heterogeneous wetting state and abruptly transits to the intermediate wetting state. The theory further predicts the loss of anti-icing property upon abrasion, which is also confirmed by experiments. The superhydrophobic coating with robustness against abrasion will find its potential application values in complex service conditions.
一种具有超强耐磨性的蚊眼状超疏水涂层
摘要:超疏水涂层可以为金属在恶劣的使用条件下提供良好的保护。然而,实际应用面临着缺乏机械鲁棒性的问题。目前解决这一问题的方法不能完全解决问题,或者不适合大规模应用。在这里,我们提出了一种创新的策略,通过简单和高输出的途径在6061铝上制备仿生超疏水涂层。通过创建具有两种不同长度尺度的类似蚊子眼的纳米框架-纳米填料结构,涂层具有超疏水性和优异的机械坚固性,这通常被认为是两个相互排斥的特性。基于修正的Cassie-Baxter模型和Gibbs界面能模型,建立了润湿理论,分析了观察到的水接触角的非线性变化,表明涂层最初保持在非均相润湿状态,然后突然过渡到中间润湿状态。该理论进一步预测了抗冰性能在磨损后的损失,并通过实验得到了证实。具有抗磨损性的超疏水涂层在复杂使用条件下具有潜在的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信