General relationships for guided acoustic waves in anisotropic plates

A. Shuvalov
{"title":"General relationships for guided acoustic waves in anisotropic plates","authors":"A. Shuvalov","doi":"10.1098/rspa.2004.1319","DOIUrl":null,"url":null,"abstract":"Some universal identities for plane elastic waves in free and clamped homogeneous plates of arbitrary anisotropy are obtained and analysed. Insight is gained by linking the dispersion of guided–wave phase velocity (or, more precisely, its derivative in wavenumber or frequency) to the Stroh matrix, i.e. to the coefficients of the governing system of wave motion equations in the sextic form, on the one hand, and to the energetic parameters, on the other. The derivation also involves the residues of the plate admittance (Gree's function in the transform domain) along a dispersion branch. Combining these complementary perspectives enables a general criterion for increasing or decreasing trends in the dispersion branches and provides useful interpretations of the difference between the phase velocity and the in–plane group velocity. Explicit examples at low, high and cut–off frequencies are presented. Limitations for the case of transversely inhomogeneous plates are discussed.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"17 1","pages":"2671 - 2679"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Some universal identities for plane elastic waves in free and clamped homogeneous plates of arbitrary anisotropy are obtained and analysed. Insight is gained by linking the dispersion of guided–wave phase velocity (or, more precisely, its derivative in wavenumber or frequency) to the Stroh matrix, i.e. to the coefficients of the governing system of wave motion equations in the sextic form, on the one hand, and to the energetic parameters, on the other. The derivation also involves the residues of the plate admittance (Gree's function in the transform domain) along a dispersion branch. Combining these complementary perspectives enables a general criterion for increasing or decreasing trends in the dispersion branches and provides useful interpretations of the difference between the phase velocity and the in–plane group velocity. Explicit examples at low, high and cut–off frequencies are presented. Limitations for the case of transversely inhomogeneous plates are discussed.
各向异性板中导声波的一般关系
得到并分析了任意各向异性的自由和固支均匀板中平面弹性波的一些普遍恒等式。通过将导波相速度的色散(或更准确地说,其波数或频率的导数)与斯特罗矩阵联系起来,即一方面与六次方形式的波动方程控制系统的系数联系起来,另一方面与能量参数联系起来,可以获得洞察力。推导还涉及沿色散分支的板导纳(变换域中的格力函数)的残数。结合这些互补的观点,可以为色散分支的增加或减少趋势提供一个通用标准,并为相速度和面内群速度之间的差异提供有用的解释。给出了低频率、高频率和截止频率的具体例子。讨论了横向非均匀板的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信