Tunable negative thermal expansion in La(Fe, Si)13/resin composites with high mechanical property and long-term cycle stability

IF 3.3 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
He Zhou, Yuwei Liu, Rongjin Huang, Bo Chen, Min Xia, Ziyuan Yu, Haodong Chen, K. Qiao, J. Cong, S. Taskaev, K. Chu, Hu Zhang
{"title":"Tunable negative thermal expansion in La(Fe, Si)13/resin composites with high mechanical property and long-term cycle stability","authors":"He Zhou, Yuwei Liu, Rongjin Huang, Bo Chen, Min Xia, Ziyuan Yu, Haodong Chen, K. Qiao, J. Cong, S. Taskaev, K. Chu, Hu Zhang","doi":"10.20517/microstructures.2022.13","DOIUrl":null,"url":null,"abstract":"Materials with tunable negative thermal expansion (NTE) are highly demanded in various functional devices. La(Fe, Si)13-based compounds are promising NTE materials due to their outstanding NTE properties. However, their poor mechanical properties and related short service life restrict their practical applications. In this work, epoxy resin with positive thermal expansion is used to synthesize La-Fe-Si/resin composites. The NTE of La-Fe-Si/resin composites can be manipulated by optimizing the La-Fe-Si particle size and resin content, and tailoring resin content could tune the NTE more effectively. The average linear coefficient of thermal expansion of the composites decreases from -275.0 × 10-6 K-1 to -4.9 × 10-6 K-1 over the magnetic transition temperature range as the resin content increases from 3 wt.% to 80 wt.%. In addition, zero thermal expansion is achieved in the La-Fe-Si/resin composite with 20 wt.% resin. The resin would reinforce the binding force by filling the pores between the particles. The La-Fe-Si/resin composite with 80 wt.% resin exhibits highly improved mechanical properties; for example, its compressive strength of 205 MPa is 75% higher than that of the La-Fe-Si/resin composite with 3 wt.% resin. The prepared La-Fe-Si/resin composites can be machined into different shapes for practical applications, such as thin plates, strips, and rods. Furthermore, the La-Fe-Si/resin composites can undergo 1000 thermal cycles without NTE performance degradation and mechanical integrity loss, indicating durable cycle stability. Hence, significantly tunable NTE with high mechanical properties and long-term cycle stability makes La-Fe-Si/resin composites present great application potential as NTE materials.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2022.13","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 2

Abstract

Materials with tunable negative thermal expansion (NTE) are highly demanded in various functional devices. La(Fe, Si)13-based compounds are promising NTE materials due to their outstanding NTE properties. However, their poor mechanical properties and related short service life restrict their practical applications. In this work, epoxy resin with positive thermal expansion is used to synthesize La-Fe-Si/resin composites. The NTE of La-Fe-Si/resin composites can be manipulated by optimizing the La-Fe-Si particle size and resin content, and tailoring resin content could tune the NTE more effectively. The average linear coefficient of thermal expansion of the composites decreases from -275.0 × 10-6 K-1 to -4.9 × 10-6 K-1 over the magnetic transition temperature range as the resin content increases from 3 wt.% to 80 wt.%. In addition, zero thermal expansion is achieved in the La-Fe-Si/resin composite with 20 wt.% resin. The resin would reinforce the binding force by filling the pores between the particles. The La-Fe-Si/resin composite with 80 wt.% resin exhibits highly improved mechanical properties; for example, its compressive strength of 205 MPa is 75% higher than that of the La-Fe-Si/resin composite with 3 wt.% resin. The prepared La-Fe-Si/resin composites can be machined into different shapes for practical applications, such as thin plates, strips, and rods. Furthermore, the La-Fe-Si/resin composites can undergo 1000 thermal cycles without NTE performance degradation and mechanical integrity loss, indicating durable cycle stability. Hence, significantly tunable NTE with high mechanical properties and long-term cycle stability makes La-Fe-Si/resin composites present great application potential as NTE materials.
La(Fe, Si)13/树脂复合材料的可调负热膨胀,具有高力学性能和长期循环稳定性
具有可调负热膨胀(NTE)的材料在各种功能器件中都有很高的需求。La(Fe, Si)13基化合物因其优异的NTE性能而成为很有前途的NTE材料。但其力学性能差,使用寿命短,限制了其实际应用。本文采用正热膨胀的环氧树脂合成了La-Fe-Si/树脂复合材料。La-Fe-Si/树脂复合材料的NTE可以通过优化La-Fe-Si的粒径和树脂含量来控制,而调整树脂含量可以更有效地调节NTE。在磁转变温度范围内,随着树脂含量从3 wt.%增加到80 wt.%,复合材料的平均热膨胀线性系数从-275.0 × 10-6 K-1降低到-4.9 × 10-6 K-1。此外,在含20 wt.%树脂的La-Fe-Si/树脂复合材料中实现了零热膨胀。树脂会通过填充颗粒之间的孔隙来增强结合力。含80 wt.%树脂的La-Fe-Si/树脂复合材料的力学性能得到了显著改善;例如,其抗压强度为205 MPa,比含有3 wt.%树脂的La-Fe-Si/树脂复合材料的抗压强度提高75%。制备的La-Fe-Si/树脂复合材料可以加工成不同形状的实际应用,如薄板,条状和棒状。此外,La-Fe-Si/树脂复合材料可以经历1000次热循环而不会导致NTE性能下降和机械完整性损失,表明持久的循环稳定性。因此,具有高机械性能和长期循环稳定性的显著可调NTE使得La-Fe-Si/树脂复合材料作为NTE材料具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Superlattices and Microstructures
Superlattices and Microstructures 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.20%
发文量
35
审稿时长
2.8 months
期刊介绍: Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover: • Novel micro and nanostructures • Nanomaterials (nanowires, nanodots, 2D materials ) and devices • Synthetic heterostructures • Plasmonics • Micro and nano-defects in materials (semiconductor, metal and insulators) • Surfaces and interfaces of thin films In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board. Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信