Adaptive Noise Subspace Estimation Algorithm with an Optimal Diagonal-Matrix Step-Size

Lu Yang, S. Attallah
{"title":"Adaptive Noise Subspace Estimation Algorithm with an Optimal Diagonal-Matrix Step-Size","authors":"Lu Yang, S. Attallah","doi":"10.1109/SIPS.2007.4387614","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new optimal diagonal-matrix step-size for the fast data projection method (FDPM) algorithm. The proposed step-sizes control the decoupled subspace vectors individually as compared to conventional methods where all the subspace vectors are multiplied by the same step-size value (scalar case). Simulation results show that FDPM with this optimal diagonal-matrix step-size outperforms the original algorithm as it offers faster convergence rate, smaller steady state error and smaller orthogonality error simultaneously. The proposed method can easily be applied to other subspace algorithms as well.","PeriodicalId":93225,"journal":{"name":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","volume":"2 1","pages":"584-588"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2007.4387614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new optimal diagonal-matrix step-size for the fast data projection method (FDPM) algorithm. The proposed step-sizes control the decoupled subspace vectors individually as compared to conventional methods where all the subspace vectors are multiplied by the same step-size value (scalar case). Simulation results show that FDPM with this optimal diagonal-matrix step-size outperforms the original algorithm as it offers faster convergence rate, smaller steady state error and smaller orthogonality error simultaneously. The proposed method can easily be applied to other subspace algorithms as well.
具有最优对角矩阵步长的自适应噪声子空间估计算法
本文提出了一种新的快速数据投影法(FDPM)算法的最优对角矩阵步长。与传统方法(所有子空间向量乘以相同的步长值(标量情况))相比,所提出的步长分别控制解耦的子空间向量。仿真结果表明,采用最优对角矩阵步长的FDPM算法具有更快的收敛速度、更小的稳态误差和更小的正交误差,优于原算法。该方法也可以很容易地应用于其他子空间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信