Chengyan Wang, Zhang Shi, Yan Li, Xueqin Xia, Xutong Kuang, Shufang Qian, Le Xue, Lizhen Lan, Yudan Wu, Na Zhang, Ji Tao, Xumei Hu, Wenzhao Cao, Naying He, Yike Guo, Weibo Chen, Jun Zhang, Jingchun Luo, He Wang, Mei Tian
{"title":"Protocol for Brain Magnetic Resonance Imaging and Extraction of Imaging-Derived Phenotypes from the China Phenobank Project.","authors":"Chengyan Wang, Zhang Shi, Yan Li, Xueqin Xia, Xutong Kuang, Shufang Qian, Le Xue, Lizhen Lan, Yudan Wu, Na Zhang, Ji Tao, Xumei Hu, Wenzhao Cao, Naying He, Yike Guo, Weibo Chen, Jun Zhang, Jingchun Luo, He Wang, Mei Tian","doi":"10.1007/s43657-022-00083-w","DOIUrl":null,"url":null,"abstract":"<p><p>Imaging-derived phenotypes (IDPs) have been increasingly used in population-based cohort studies in recent years. As widely reported, magnetic resonance imaging (MRI) is an important imaging modality for assessing the anatomical structure and function of the brain with high resolution and excellent soft-tissue contrast. The purpose of this article was to describe the imaging protocol of the brain MRI in the China Phenobank Project (CHPP). Each participant underwent a 30-min brain MRI scan as part of a 2-h whole-body imaging protocol in CHPP. The brain imaging sequences included <i>T</i><sub>1</sub>-magnetization that prepared rapid gradient echo, <i>T</i><sub>2</sub> fluid-attenuated inversion-recovery, magnetic resonance angiography, diffusion MRI, and resting-state functional MRI. The detailed descriptions of image acquisition, interpretation, and post-processing were provided in this article. The measured IDPs included volumes of brain subregions, cerebral vessel geometrical parameters, microstructural tracts, and function connectivity metrics.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s43657-022-00083-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Imaging-derived phenotypes (IDPs) have been increasingly used in population-based cohort studies in recent years. As widely reported, magnetic resonance imaging (MRI) is an important imaging modality for assessing the anatomical structure and function of the brain with high resolution and excellent soft-tissue contrast. The purpose of this article was to describe the imaging protocol of the brain MRI in the China Phenobank Project (CHPP). Each participant underwent a 30-min brain MRI scan as part of a 2-h whole-body imaging protocol in CHPP. The brain imaging sequences included T1-magnetization that prepared rapid gradient echo, T2 fluid-attenuated inversion-recovery, magnetic resonance angiography, diffusion MRI, and resting-state functional MRI. The detailed descriptions of image acquisition, interpretation, and post-processing were provided in this article. The measured IDPs included volumes of brain subregions, cerebral vessel geometrical parameters, microstructural tracts, and function connectivity metrics.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.