S. Gundry, Jianmin Zou, Janusz Kusyk, M. U. Uyar, C. Sahin
{"title":"Fault tolerant bio-inspired topology control mechanism for autonomous mobile node distribution in MANETs","authors":"S. Gundry, Jianmin Zou, Janusz Kusyk, M. U. Uyar, C. Sahin","doi":"10.1109/MILCOM.2012.6415743","DOIUrl":null,"url":null,"abstract":"We introduce a fault tolerant bio-inspired topolog-ical control mechanism (TCM-Y) for the evolutionary decision making process of autonomous mobile nodes that adaptively adjust their spatial configuration in MANETs. TCM-Y is based on differential evolution and maintains a user-defined minimum connectivity for each node with its near neighbors. TCM-Y, therefore, provides a topology control mechanism which is fault tolerant with regards to network connectivity that each mobile node is required to maintain. In its fitness calculations, TCM-Y uses the Yao graph structure to enforce a user-defined minimum number of neighbors while obtaining uniform network topology. The effectiveness of TCM-Y is evaluated by comparing it with our differential evolution based topology mechanism (TCM-DE) that uses virtual forces from neighbors in its fitness function. Experimental results obtained from simulation software show that TCM-Y performs well with respect to normalized area coverage, the average connectivity, and the minimum connectivity achieved by mobile nodes. Simulation experiments demonstrate that TCM-Y generates encouraging results for uniform distribution of mobile nodes over unknown terrains while maintaining a user-defined minimum connectivity between neighboring nodes.","PeriodicalId":18720,"journal":{"name":"MILCOM 2012 - 2012 IEEE Military Communications Conference","volume":"20 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2012 - 2012 IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2012.6415743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We introduce a fault tolerant bio-inspired topolog-ical control mechanism (TCM-Y) for the evolutionary decision making process of autonomous mobile nodes that adaptively adjust their spatial configuration in MANETs. TCM-Y is based on differential evolution and maintains a user-defined minimum connectivity for each node with its near neighbors. TCM-Y, therefore, provides a topology control mechanism which is fault tolerant with regards to network connectivity that each mobile node is required to maintain. In its fitness calculations, TCM-Y uses the Yao graph structure to enforce a user-defined minimum number of neighbors while obtaining uniform network topology. The effectiveness of TCM-Y is evaluated by comparing it with our differential evolution based topology mechanism (TCM-DE) that uses virtual forces from neighbors in its fitness function. Experimental results obtained from simulation software show that TCM-Y performs well with respect to normalized area coverage, the average connectivity, and the minimum connectivity achieved by mobile nodes. Simulation experiments demonstrate that TCM-Y generates encouraging results for uniform distribution of mobile nodes over unknown terrains while maintaining a user-defined minimum connectivity between neighboring nodes.