{"title":"Classification of generic system dynamics model outputs via supervised time series pattern discovery","authors":"Mert Edali, M. Baydogan, Gönenç Yücel","doi":"10.3906/ELK-1711-394","DOIUrl":null,"url":null,"abstract":"System dynamics (SD) is a simulation-based approach for analyzing feedback-rich systems. An ideal SD modeling cycle requires evaluating the qualitative pattern characteristics of a large set of time series model output for testing, validation, scenario analysis, and policy analysis purposes. This traditionally requires expert judgement, which limits the extent of experimentation due to time constraints. Although time series recognition approaches can help to automate such an evaluation, utilization of them has been limited to a hidden Markov model classifier, namely the Indirect Structure Testing Software (ISTS) algorithm. Despite being used within several automated model-analysis tools, ISTS has several shortcomings. In that respect, we propose an interpretable time series classification algorithm for the SD field, which also addresses the shortcomings of ISTS. Our approach, which can highlight the regions of a certain time series that are influential in the class assignment, is an extension of the symbolic multivariate time series approach with the use of a local importance measure. We compare the performance of the proposed approach against both ISTS and nearest-neighbor (NN) classifiers. Our experiments on a SD-specific application show that the proposed approach outperforms ISTS as well as conventional NN classifiers on both noisy and nonnoisy datasets. Additionally, its class assignments are interpretable as opposed to the other approaches considered in the experiments.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"5 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3906/ELK-1711-394","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
System dynamics (SD) is a simulation-based approach for analyzing feedback-rich systems. An ideal SD modeling cycle requires evaluating the qualitative pattern characteristics of a large set of time series model output for testing, validation, scenario analysis, and policy analysis purposes. This traditionally requires expert judgement, which limits the extent of experimentation due to time constraints. Although time series recognition approaches can help to automate such an evaluation, utilization of them has been limited to a hidden Markov model classifier, namely the Indirect Structure Testing Software (ISTS) algorithm. Despite being used within several automated model-analysis tools, ISTS has several shortcomings. In that respect, we propose an interpretable time series classification algorithm for the SD field, which also addresses the shortcomings of ISTS. Our approach, which can highlight the regions of a certain time series that are influential in the class assignment, is an extension of the symbolic multivariate time series approach with the use of a local importance measure. We compare the performance of the proposed approach against both ISTS and nearest-neighbor (NN) classifiers. Our experiments on a SD-specific application show that the proposed approach outperforms ISTS as well as conventional NN classifiers on both noisy and nonnoisy datasets. Additionally, its class assignments are interpretable as opposed to the other approaches considered in the experiments.
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.