Optimization-Driven Kernel and Deep Convolutional Neural Network for Multi-View Face Video Super Resolution

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
A. Deshmukh, N. U. Rani
{"title":"Optimization-Driven Kernel and Deep Convolutional Neural Network for Multi-View Face Video Super Resolution","authors":"A. Deshmukh, N. U. Rani","doi":"10.4018/ijdcf.2020070106","DOIUrl":null,"url":null,"abstract":"One of the major challenges faced by video surveillance is recognition from low-resolution videos or person identification. Image enhancement methods play a significant role in enhancing the resolution of the video. This article introduces a technique for face super resolution based on a deep convolutional neural network (Deep CNN). At first, the video frames are extracted from the input video and the face detection is performed using the Viola-Jones algorithm. The detected face image and the scaling factors are fed into the Fractional-Grey Wolf Optimizer (FGWO)-based kernel weighted regression model and the proposed Deep CNN separately. Finally, the results obtained from both the techniques are integrated using a fuzzy logic system, offering a face image with enhanced resolution. Experimentation is carried out using the UCSD face video dataset, and the effectiveness of the proposed Deep CNN is checked depending on the block size and the upscaling factor values and is evaluated to be the best when compared to other existing techniques with an improved SDME value of 80.888.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":"15 1","pages":"77-95"},"PeriodicalIF":0.6000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdcf.2020070106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

One of the major challenges faced by video surveillance is recognition from low-resolution videos or person identification. Image enhancement methods play a significant role in enhancing the resolution of the video. This article introduces a technique for face super resolution based on a deep convolutional neural network (Deep CNN). At first, the video frames are extracted from the input video and the face detection is performed using the Viola-Jones algorithm. The detected face image and the scaling factors are fed into the Fractional-Grey Wolf Optimizer (FGWO)-based kernel weighted regression model and the proposed Deep CNN separately. Finally, the results obtained from both the techniques are integrated using a fuzzy logic system, offering a face image with enhanced resolution. Experimentation is carried out using the UCSD face video dataset, and the effectiveness of the proposed Deep CNN is checked depending on the block size and the upscaling factor values and is evaluated to be the best when compared to other existing techniques with an improved SDME value of 80.888.
基于优化驱动核和深度卷积神经网络的多视图人脸视频超分辨率研究
视频监控面临的主要挑战之一是低分辨率视频的识别或人员识别。图像增强方法在提高视频分辨率方面起着重要的作用。介绍了一种基于深度卷积神经网络(deep CNN)的人脸超分辨率技术。首先,从输入视频中提取视频帧,并使用Viola-Jones算法进行人脸检测。将检测到的人脸图像和比例因子分别输入到基于分数-灰狼优化器(FGWO)的核加权回归模型和所提出的深度CNN中。最后,使用模糊逻辑系统将两种技术的结果集成在一起,从而获得分辨率更高的人脸图像。利用UCSD人脸视频数据集进行了实验,并根据块大小和升级因子值对所提出的深度CNN的有效性进行了检验,与其他现有技术相比,改进的SDME值为80.888,被评估为最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信