A polymerizable difunctional photoinitiator featuring a bio-based group and its photoinitiating properties

Yanfang Zhou, R. Zhong, Zhengjie Wang
{"title":"A polymerizable difunctional photoinitiator featuring a bio-based group and its photoinitiating properties","authors":"Yanfang Zhou, R. Zhong, Zhengjie Wang","doi":"10.1177/17475198221136063","DOIUrl":null,"url":null,"abstract":"A polymerizable difunctional photoinitiator 2-methylene-succinic acid bis-{2-[4-(2-hydroxy-2-methylpropionyl)phenoxy]ethyl} ester (IAHHMP) based on the commercial photoinitiator 2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methylpropanone (HHMP) and a biorenewable itaconic acid is synthesized by esterification. The structure is confirmed by ultraviolet spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy (1H NMR, 13C NMR) and thermogravimetric analysis. The photopolymerization behaviour of the photoinitiator is investigated using photo-differential scanning calorimetry and compared with that of two commercial photoinitiators, HHMP (or photoinitiator 2959) and 1-hydroxycyclohexyl phenyl ketone (or photoinitiator 184). The results show that IAHHMP has a strong UV absorption capacity at 245~300 nm and can initiate polymerization of monomers containing a double bond. The relative migration of IAHHMP is less than that of the systems containing an HHMP or 1-hydroxycyclohexyl phenyl ketone photoinitiator. Therefore, IAHHMP is expected to have potential applications in more environmentally friendly materials, such as in food and medical packaging.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198221136063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A polymerizable difunctional photoinitiator 2-methylene-succinic acid bis-{2-[4-(2-hydroxy-2-methylpropionyl)phenoxy]ethyl} ester (IAHHMP) based on the commercial photoinitiator 2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methylpropanone (HHMP) and a biorenewable itaconic acid is synthesized by esterification. The structure is confirmed by ultraviolet spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy (1H NMR, 13C NMR) and thermogravimetric analysis. The photopolymerization behaviour of the photoinitiator is investigated using photo-differential scanning calorimetry and compared with that of two commercial photoinitiators, HHMP (or photoinitiator 2959) and 1-hydroxycyclohexyl phenyl ketone (or photoinitiator 184). The results show that IAHHMP has a strong UV absorption capacity at 245~300 nm and can initiate polymerization of monomers containing a double bond. The relative migration of IAHHMP is less than that of the systems containing an HHMP or 1-hydroxycyclohexyl phenyl ketone photoinitiator. Therefore, IAHHMP is expected to have potential applications in more environmentally friendly materials, such as in food and medical packaging.
一种具有生物基基团的可聚合双官能光引发剂及其光引发性能
以商业光引发剂2-羟基-1-[4-(2-羟基-2-甲基丙氧基)苯基]-2-甲基丙烷酮(HHMP)和生物可再生衣康酸为原料,通过酯化反应合成了可聚合双官能团光引发剂2-亚甲琥珀酸双-{2-[4-(2-羟基-2-甲基丙氧基)苯氧基]乙酯(IAHHMP)。通过紫外光谱、傅里叶变换红外光谱、核磁共振波谱(1H NMR、13C NMR)和热重分析证实了其结构。采用光差扫描量热法研究了该光引发剂的光聚合行为,并与两种商用光引发剂HHMP(或光引发剂2959)和1-羟基环己基苯酮(或光引发剂184)进行了比较。结果表明,IAHHMP在245~300 nm范围内具有较强的紫外吸收能力,并能引发含双键单体的聚合。IAHHMP的相对迁移量小于含有HHMP或1-羟基环己基苯酮光引发剂的体系。因此,IAHHMP有望在更环保的材料中有潜在的应用,例如食品和医疗包装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Research-s
Journal of Chemical Research-s 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信