Z. Knyazeva, D. I. Andriyanov, P. Yudin, Roman Vasin
{"title":"RESEARCH OF WEAR RESISTANCE AND MECHANISM OF ABRASIVE WEAR OF GAS THERMAL METALLIZED COATINGS USED FOR SEM PROTECTION","authors":"Z. Knyazeva, D. I. Andriyanov, P. Yudin, Roman Vasin","doi":"10.17122/ngdelo-2023-1-90-102","DOIUrl":null,"url":null,"abstract":"As is known, the current stage of the development of the oil industry of the Russian Federation is characterized by complicated conditions for field development, which is due to low production rates due to the high viscosity of oil, high aggressiveness and water cut in the media. Almost the entire well stock is operated mechanically, mainly with the help of electric submersible pumps (ESPs). To date, the use of metallization coatings applied by thermal spraying, due to their high physical, mechanical and chemical properties, is the most effective way to protect submersible equipment in the mining industry, in particular, the body of a submersible electric motor (SEM) from the influence of complicating factors. Nevertheless, there have been repeated cases of a decrease in the service life of equipment associated with the processes of destruction of metallization coatings. Abrasive wear is one of the most common reasons for the destruction of gas-thermal metallization coatings of SEM cases during operation. This article presents an overview of the main parameters that determine the wear resistance of gas-thermal metallization coatings, the main wear mechanisms and types of coating damage during wear are considered. Comparative tests of the wear resistance of gas-thermal metallization coatings deposited by the methods of electric arc metallization (EDM) and high-speed flame spraying (HSFP) under the influence of abrasive particles were carried out. It has been established that the destruction of gas-thermal metallization coatings proceeds mainly by chipping particles, for metallization coatings that have refractory compounds in their composition, fatigue failure is also characteristic, due to the accumulation of internal stresses during highcycle elastic-plastic deformation of the coating, which contribute to the formation of fatigue cracks and subsequent separation of particles with surface layer. The results obtained confirm the significant effect of the uniformity of the structure of gas-thermal metallization coatings on their wear resistance, as well as the staging of the wear process.","PeriodicalId":9748,"journal":{"name":"Chemical and Petroleum Engineering","volume":"21 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17122/ngdelo-2023-1-90-102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As is known, the current stage of the development of the oil industry of the Russian Federation is characterized by complicated conditions for field development, which is due to low production rates due to the high viscosity of oil, high aggressiveness and water cut in the media. Almost the entire well stock is operated mechanically, mainly with the help of electric submersible pumps (ESPs). To date, the use of metallization coatings applied by thermal spraying, due to their high physical, mechanical and chemical properties, is the most effective way to protect submersible equipment in the mining industry, in particular, the body of a submersible electric motor (SEM) from the influence of complicating factors. Nevertheless, there have been repeated cases of a decrease in the service life of equipment associated with the processes of destruction of metallization coatings. Abrasive wear is one of the most common reasons for the destruction of gas-thermal metallization coatings of SEM cases during operation. This article presents an overview of the main parameters that determine the wear resistance of gas-thermal metallization coatings, the main wear mechanisms and types of coating damage during wear are considered. Comparative tests of the wear resistance of gas-thermal metallization coatings deposited by the methods of electric arc metallization (EDM) and high-speed flame spraying (HSFP) under the influence of abrasive particles were carried out. It has been established that the destruction of gas-thermal metallization coatings proceeds mainly by chipping particles, for metallization coatings that have refractory compounds in their composition, fatigue failure is also characteristic, due to the accumulation of internal stresses during highcycle elastic-plastic deformation of the coating, which contribute to the formation of fatigue cracks and subsequent separation of particles with surface layer. The results obtained confirm the significant effect of the uniformity of the structure of gas-thermal metallization coatings on their wear resistance, as well as the staging of the wear process.
期刊介绍:
Chemical and Petroleum Engineering publishes the latest research on Russian innovations in the field. Articles discuss developments in machinery and equipment, construction and design, processes, materials and corrosion control, and equipment-manufacturing technology. Chemical and Petroleum Engineering is a translation of the Russian journal Khimicheskoe i Neftegazovoe Mashinostroenie. The Russian Volume Year is published in English from April. All articles are peer-reviewed.