Pavel Ivanoff Reyes , Keyang Yang , Andrew Zheng , Rui Li , Guangyuan Li , Yicheng Lu , Chi Kwan Tsang , Steven X.F. Zheng
{"title":"Magnesium Zinc Oxide Nanostructure-modified Quartz Crystal Microbalance for Dynamic Monitoring of Antibiotic Effects and Antimicrobial Resistance","authors":"Pavel Ivanoff Reyes , Keyang Yang , Andrew Zheng , Rui Li , Guangyuan Li , Yicheng Lu , Chi Kwan Tsang , Steven X.F. Zheng","doi":"10.1016/j.protcy.2017.04.022","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate a magnesium zinc oxide (MZO) nanostructure-modified quartz crystal microbalance (MZO<sub>nano</sub>-QCM) biosensor to dynamically monitor antimicrobial effects on <em>E. coli</em> and <em>S. cerevisiae.</em> The MZO nanostructures were grown on the top electrode of a standard QCM using metal-organic chemical-vapor deposition (MOCVD). The MZO nanostructures are utilized as the sensing material due to their multifunctionality, biocompatibility, and very large effective sensing surface. The MZO surface-wettability and morphology are controlled, offering high-sensitivity to various biological/biochemical species. The MZO<sub>nano</sub>-QCM was applied to detect the effects of ampicillin and tetracycline on sensitive and resistant strains of <em>E.coli</em>, as well as effects of amphotericin-B and miconazole on <em>S. cerevisiae</em> through the device's time-dependent frequency shift and motional resistance.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":"27 ","pages":"Pages 46-47"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.022","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212017317300233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We demonstrate a magnesium zinc oxide (MZO) nanostructure-modified quartz crystal microbalance (MZOnano-QCM) biosensor to dynamically monitor antimicrobial effects on E. coli and S. cerevisiae. The MZO nanostructures were grown on the top electrode of a standard QCM using metal-organic chemical-vapor deposition (MOCVD). The MZO nanostructures are utilized as the sensing material due to their multifunctionality, biocompatibility, and very large effective sensing surface. The MZO surface-wettability and morphology are controlled, offering high-sensitivity to various biological/biochemical species. The MZOnano-QCM was applied to detect the effects of ampicillin and tetracycline on sensitive and resistant strains of E.coli, as well as effects of amphotericin-B and miconazole on S. cerevisiae through the device's time-dependent frequency shift and motional resistance.