{"title":"The Effects of Surface Conditioning and Aging on the Bond Strength Between Composite Cement and Zirconia-reinforced Lithium-Silicate Glass-Ceramics.","authors":"W. Bömicke, P. Rammelsberg, J. Krisam, S. Rues","doi":"10.3290/j.jad.a43650","DOIUrl":null,"url":null,"abstract":"PURPOSE To determine the effects of ceramic-surface conditioning and aging on the bond strength between composite cement and zirconia-reinforced lithium-silicate glass-ceramics (ZLS) under simulated clinical conditions. MATERIALS AND METHODS ZLS disks (Celtra Duo, Dentsply Sirona, n = 110 test group n = 10, diameter: 8.3 mm, height: 3.4 mm) were assigned to four surface-conditioning groups: (I) 30 s of ~5% hydrofluoric-acid etching (Vita Ceramics Etch, Vita; HF), silanization (Calibra Silane; SIL); (II) successive contamination with saliva and silicone (CONT), HF, SIL; (III) CONT, tribochemical silicatization (CoJet), SIL; (IV) HF, SIL, application and light polymerization of an adhesive (Prime&Bond Active), CONT, reapplication and light polymerization of the adhesive. The ZLS disks were bonded to composite-resin cylinders in acrylic tubes (inner diameter: 3.3 mm) using self-adhesive composite cement (Calibra Universal). The tensile-bond strength (TBS) was measured after both 24 h and 6 months of water storage (WS). Additional aging protocols were tested for group I (3-day WS; 30-day WS including 7500 thermocycles between 6.5 and 60°C; 150-day WS including 37,500 thermocycles). RESULTS After 24 h, the mean TBS ranged between 21 MPa (group III) and 30-35 MPa (remaining groups). With the exception of 3-day WS, TBS was statistically significantly reduced by aging. The greatest reduction was observed for silicatized specimens (group III, mean TBS after aging: 9.8 MPa). CONCLUSION Both ceramic surface conditioning and aging had a statistically significant effect on the bond strength between composite cement and ZLS. A treatment protocol based on tribochemical silicatization cannot be recommended for the adhesive cementation of ZLS.","PeriodicalId":94234,"journal":{"name":"The journal of adhesive dentistry","volume":"41 1","pages":"567-576"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of adhesive dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3290/j.jad.a43650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
PURPOSE To determine the effects of ceramic-surface conditioning and aging on the bond strength between composite cement and zirconia-reinforced lithium-silicate glass-ceramics (ZLS) under simulated clinical conditions. MATERIALS AND METHODS ZLS disks (Celtra Duo, Dentsply Sirona, n = 110 test group n = 10, diameter: 8.3 mm, height: 3.4 mm) were assigned to four surface-conditioning groups: (I) 30 s of ~5% hydrofluoric-acid etching (Vita Ceramics Etch, Vita; HF), silanization (Calibra Silane; SIL); (II) successive contamination with saliva and silicone (CONT), HF, SIL; (III) CONT, tribochemical silicatization (CoJet), SIL; (IV) HF, SIL, application and light polymerization of an adhesive (Prime&Bond Active), CONT, reapplication and light polymerization of the adhesive. The ZLS disks were bonded to composite-resin cylinders in acrylic tubes (inner diameter: 3.3 mm) using self-adhesive composite cement (Calibra Universal). The tensile-bond strength (TBS) was measured after both 24 h and 6 months of water storage (WS). Additional aging protocols were tested for group I (3-day WS; 30-day WS including 7500 thermocycles between 6.5 and 60°C; 150-day WS including 37,500 thermocycles). RESULTS After 24 h, the mean TBS ranged between 21 MPa (group III) and 30-35 MPa (remaining groups). With the exception of 3-day WS, TBS was statistically significantly reduced by aging. The greatest reduction was observed for silicatized specimens (group III, mean TBS after aging: 9.8 MPa). CONCLUSION Both ceramic surface conditioning and aging had a statistically significant effect on the bond strength between composite cement and ZLS. A treatment protocol based on tribochemical silicatization cannot be recommended for the adhesive cementation of ZLS.