Effect of Cooling Rate on Dopant Spatial Localization and Phase Transformation in Cu‐Doped Y‐Stabilized ZrO2 Nanopowders

N. Korsunska, M. Baran, I. Vorona, V. Nosenko, S. Lavoryk, Yu. O. Polishchuk, V. Kladko, X. Portier, L. Khomenkova
{"title":"Effect of Cooling Rate on Dopant Spatial Localization and Phase Transformation in Cu‐Doped Y‐Stabilized ZrO2 Nanopowders","authors":"N. Korsunska, M. Baran, I. Vorona, V. Nosenko, S. Lavoryk, Yu. O. Polishchuk, V. Kladko, X. Portier, L. Khomenkova","doi":"10.1002/PSSC.201700183","DOIUrl":null,"url":null,"abstract":"The effect of calcination temperature (TC = 500–1000 °C) and cooling rate on the dopant distribution in Cu‐doped Y‐stabilized ZrO2 nanopowders is studied. The powders are produced by co‐precipitation technique and investigated by attenuated total reflection, UV‐vis diffuse reflectance, electron paramagnetic resonance, and transmission electron microscopy methods. The cooling rate is found to affect the amount of Cu substances on grain surface, the powders subjected to fast cooling (quenching) showed higher amount of Cu‐related complexes on the grains’ surface than their counterparts cooled with furnace after calcination. It is observed that Cu impurities diffuse inside ZrO2 grains from Cu‐related surface substances when TC   800 °C, outward migration of Cu dopants takes place. Simultaneously, the intensity of 275‐nm absorption band decreases, the monoclinic ZrO2 phase forms and its contribution rises with TC. It is proposed that monoclinic phase formation is caused by the replacement of Cu atoms from lattice sites to interstitials leading to an appearance of the channels for Y out‐diffusion via cation vacancies and destabilization of ZrO2 tetragonal phase.","PeriodicalId":20065,"journal":{"name":"Physica Status Solidi (c)","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi (c)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/PSSC.201700183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The effect of calcination temperature (TC = 500–1000 °C) and cooling rate on the dopant distribution in Cu‐doped Y‐stabilized ZrO2 nanopowders is studied. The powders are produced by co‐precipitation technique and investigated by attenuated total reflection, UV‐vis diffuse reflectance, electron paramagnetic resonance, and transmission electron microscopy methods. The cooling rate is found to affect the amount of Cu substances on grain surface, the powders subjected to fast cooling (quenching) showed higher amount of Cu‐related complexes on the grains’ surface than their counterparts cooled with furnace after calcination. It is observed that Cu impurities diffuse inside ZrO2 grains from Cu‐related surface substances when TC   800 °C, outward migration of Cu dopants takes place. Simultaneously, the intensity of 275‐nm absorption band decreases, the monoclinic ZrO2 phase forms and its contribution rises with TC. It is proposed that monoclinic phase formation is caused by the replacement of Cu atoms from lattice sites to interstitials leading to an appearance of the channels for Y out‐diffusion via cation vacancies and destabilization of ZrO2 tetragonal phase.
冷却速率对Cu掺杂Y稳定ZrO2纳米粉体中掺杂物空间定位和相变的影响
研究了煅烧温度(TC = 500 ~ 1000℃)和冷却速率对Cu掺杂Y稳定ZrO2纳米粉体中掺杂物分布的影响。粉末采用共沉淀法制备,并通过衰减全反射、UV - vis漫反射、电子顺磁共振和透射电镜等方法进行了研究。研究发现,冷却速度对晶粒表面Cu物质的含量有影响,快速冷却(淬火)的粉末在晶粒表面的Cu相关配合物含量高于煅烧后用电炉冷却的粉末。当温度为800℃时,Cu杂质从Cu相关表面物质扩散到ZrO2晶粒内部,Cu掺杂剂发生向外迁移。同时,275 nm吸收带强度降低,形成单斜相ZrO2,其贡献随温度升高而增大。单斜相的形成是由于Cu原子从晶格位置取代到间隙导致Y通过阳离子空位扩散的通道的出现和ZrO2四方相的不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信