Therapeutic applications of three-dimensional organoid models in lung cancer

C. Yeo, Y. Yun, Dong Hyuck Ahn, Y. Hwang, Seung Hee Yang, Hyobin Won, Hyeong Jun Cho, Chan Kwon Park, S. Kim, Jong Y. Park
{"title":"Therapeutic applications of three-dimensional organoid models in lung cancer","authors":"C. Yeo, Y. Yun, Dong Hyuck Ahn, Y. Hwang, Seung Hee Yang, Hyobin Won, Hyeong Jun Cho, Chan Kwon Park, S. Kim, Jong Y. Park","doi":"10.51335/organoid.2021.1.e6","DOIUrl":null,"url":null,"abstract":"Lung cancer, which remains a major cause of mortality worldwide, is a histologically diverse condition and demonstrates substantial phenotypic and genomic diversity among individual patients, manifesting as both intertumoral and intratumoral heterogeneity. This heterogeneity has made it difficult to develop lung cancer models. Two-dimensional (2D) cancer cell lines have been used to study genetic and molecular alterations in lung cancer. However, cancer cell lines have several disadvantages, including random genetic drift caused by long-term culture, a lack of annotated clinical data, and most importantly, the fact that only a subset of tumors shows 2D growth on plastic. Three-dimensional models of cancer have the potential to improve cancer research and drug development because they are more representative of cancer biology and its diverse pathophysiology. Herein, we present an integrated review of current information on preclinical lung cancer models and their limitations, including cancer cell line models, patient-derived xenografts, and lung cancer organoids, and discuss their possible therapeutic applications for drug discovery and screening to guide precision medicine in lung cancer research. Altogether, the success rate of generating lung cancer organoids must be improved, and a lung cancer organoid culture system is necessary to achieve the goal of designing an individualized therapeutic strategy for each lung cancer patient.","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Organoid and Systems Neuroscience Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51335/organoid.2021.1.e6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer, which remains a major cause of mortality worldwide, is a histologically diverse condition and demonstrates substantial phenotypic and genomic diversity among individual patients, manifesting as both intertumoral and intratumoral heterogeneity. This heterogeneity has made it difficult to develop lung cancer models. Two-dimensional (2D) cancer cell lines have been used to study genetic and molecular alterations in lung cancer. However, cancer cell lines have several disadvantages, including random genetic drift caused by long-term culture, a lack of annotated clinical data, and most importantly, the fact that only a subset of tumors shows 2D growth on plastic. Three-dimensional models of cancer have the potential to improve cancer research and drug development because they are more representative of cancer biology and its diverse pathophysiology. Herein, we present an integrated review of current information on preclinical lung cancer models and their limitations, including cancer cell line models, patient-derived xenografts, and lung cancer organoids, and discuss their possible therapeutic applications for drug discovery and screening to guide precision medicine in lung cancer research. Altogether, the success rate of generating lung cancer organoids must be improved, and a lung cancer organoid culture system is necessary to achieve the goal of designing an individualized therapeutic strategy for each lung cancer patient.
三维类器官模型在肺癌治疗中的应用
肺癌仍然是世界范围内死亡的主要原因,它是一种组织学多样化的疾病,在个体患者中表现出大量的表型和基因组多样性,表现为肿瘤间和肿瘤内的异质性。这种异质性使得建立肺癌模型变得困难。二维(2D)癌细胞系已被用于研究肺癌的遗传和分子改变。然而,癌细胞系有几个缺点,包括长期培养引起的随机遗传漂变,缺乏注释的临床数据,最重要的是,只有一小部分肿瘤在塑料上显示2D生长。癌症的三维模型有可能改善癌症研究和药物开发,因为它们更能代表癌症生物学及其多样化的病理生理。在此,我们综合回顾了临床前肺癌模型及其局限性的最新信息,包括癌细胞系模型、患者来源的异种移植物和肺癌类器官,并讨论了它们在药物发现和筛选方面可能的治疗应用,以指导肺癌研究中的精准医学。总之,必须提高肺癌类器官的生成成功率,并且需要一个肺癌类器官培养系统来实现为每个肺癌患者设计个体化治疗策略的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信