Enabling Multiple-Vt Device Scaling for CMOS Technology beyond 7nm Node

V. Chang, S.H. Wang, J. Lu, W. Wu, B. Wu, B. Hsu, K. Kwong, J. Yeh, C. Chang, C.H. Chen, C. O. Chui, M. Yeh, K.B. Huang, R. Chen, K.S. Chen, S. Wu
{"title":"Enabling Multiple-Vt Device Scaling for CMOS Technology beyond 7nm Node","authors":"V. Chang, S.H. Wang, J. Lu, W. Wu, B. Wu, B. Hsu, K. Kwong, J. Yeh, C. Chang, C.H. Chen, C. O. Chui, M. Yeh, K.B. Huang, R. Chen, K.S. Chen, S. Wu","doi":"10.1109/VLSITechnology18217.2020.9265050","DOIUrl":null,"url":null,"abstract":"For the first time, multiple-Vt (multi-Vt) device options with Vt range> 250 mV are achieved in standard cells at dimensions beyond 7nm technology node. To overcome the common scaling challenges of potential device options such as FinFET and gate all-around (GAA) nanosheet transistor - gate length and cell height scaling, key enablers are identified, including novel, thin, and conformal work function metal (WFM) with enhanced patterning efficiency, high-k (HK) engineering, and precise WFM patterning boundary control. This work enables design flexibility for advanced CMOS technology beyond 7nm node with critical differentiators.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"46 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

For the first time, multiple-Vt (multi-Vt) device options with Vt range> 250 mV are achieved in standard cells at dimensions beyond 7nm technology node. To overcome the common scaling challenges of potential device options such as FinFET and gate all-around (GAA) nanosheet transistor - gate length and cell height scaling, key enablers are identified, including novel, thin, and conformal work function metal (WFM) with enhanced patterning efficiency, high-k (HK) engineering, and precise WFM patterning boundary control. This work enables design flexibility for advanced CMOS technology beyond 7nm node with critical differentiators.
超过7nm节点的CMOS技术实现多vt器件缩放
首次在超过7nm技术节点尺寸的标准电池中实现了Vt范围> 250mv的多Vt (multi-Vt)器件选项。为了克服潜在器件选项(如FinFET和栅极全能(GAA)纳米片晶体管)的常见缩放挑战-栅极长度和单元高度缩放,确定了关键促成因素,包括具有增强图像化效率的新型,薄的和保形功功能金属(WFM),高k (HK)工程和精确的WFM图像化边界控制。这项工作为具有关键微分器的7nm以上节点的先进CMOS技术提供了设计灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信