Electric‐field‐tunable bipolar linear magnetoelectric effect in zigzag graphene nanoribbon‐based antiferromagnet

W. Xie, Zhenzhen Qin, Yu Song, Bin Shao, Xu Zuo
{"title":"Electric‐field‐tunable bipolar linear magnetoelectric effect in zigzag graphene nanoribbon‐based antiferromagnet","authors":"W. Xie, Zhenzhen Qin, Yu Song, Bin Shao, Xu Zuo","doi":"10.1002/pssr.202300228","DOIUrl":null,"url":null,"abstract":"Modern electronic devices are moving toward miniaturization and integration. Therefore, achieving electrical control of magnetization effectively in one‐dimensional materials represents a promising field for the practical applications in memory elements. In this study, it is discovered, from first‐principles calculations, that an electric‐field‐tunable bipolar linear magnetoelectric effect can be realized in one‐dimensional antiferromagnet based on double‐Gd‐adsorbed graphene nanoribbon with four zigzag carbon chains (2Gd‐4ZGNR). We find that, compared with the bare 4ZGNR, the adsorption of two Gd atoms on the 4ZGNR reduces the bandgap. As a result, 2Gd‐4ZGNR transits from antiferromagnetic semiconductor to ferrimagnetic metal at a relatively low critical external transverse (perpendicular) electric field, where the net magnetic moment can be induced. The antiferromagnetism and inversion‐symmetrical crystal structure further allow to realize a bipolar linear magnetoelectric effect, where the 2Gd‐4ZGNR form two groups of independent linear magnetic response states, acting as a magnetoelectric memory element.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"21 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (RRL) – Rapid Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssr.202300228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern electronic devices are moving toward miniaturization and integration. Therefore, achieving electrical control of magnetization effectively in one‐dimensional materials represents a promising field for the practical applications in memory elements. In this study, it is discovered, from first‐principles calculations, that an electric‐field‐tunable bipolar linear magnetoelectric effect can be realized in one‐dimensional antiferromagnet based on double‐Gd‐adsorbed graphene nanoribbon with four zigzag carbon chains (2Gd‐4ZGNR). We find that, compared with the bare 4ZGNR, the adsorption of two Gd atoms on the 4ZGNR reduces the bandgap. As a result, 2Gd‐4ZGNR transits from antiferromagnetic semiconductor to ferrimagnetic metal at a relatively low critical external transverse (perpendicular) electric field, where the net magnetic moment can be induced. The antiferromagnetism and inversion‐symmetrical crystal structure further allow to realize a bipolar linear magnetoelectric effect, where the 2Gd‐4ZGNR form two groups of independent linear magnetic response states, acting as a magnetoelectric memory element.This article is protected by copyright. All rights reserved.
基于之字形石墨烯纳米带的反铁磁体中电场可调双极线性磁电效应
现代电子设备正朝着小型化和集成化的方向发展。因此,在一维材料中实现有效的磁化电控制是存储元件实际应用的一个有前景的领域。在这项研究中,从第一性原理计算中发现,电场可调的双极线性磁电效应可以在一维反铁磁体中实现,该反铁磁体基于双Gd吸附的具有四条之字形碳链的石墨烯纳米带(2Gd‐4ZGNR)。我们发现,与裸4ZGNR相比,两个Gd原子在4ZGNR上的吸附减小了带隙。结果,2Gd‐4ZGNR在相对较低的临界外部横向(垂直)电场下从反铁磁半导体过渡到铁磁金属,在那里可以诱导净磁矩。反铁磁性和反对称晶体结构进一步实现了双极线性磁电效应,其中2Gd‐4ZGNR形成两组独立的线性磁响应状态,充当磁电存储元件。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信