Single-step fabrication of superhydrophobic micro/nano dual-scale PDMS film replicated from ultra-low-surface-energy mold

Xiao-Sheng Zhang, Bai-Hong Jin, Shi-Gan Chu, N. Peter, Fu-Yun Zhu, Hai-Xia Zhang
{"title":"Single-step fabrication of superhydrophobic micro/nano dual-scale PDMS film replicated from ultra-low-surface-energy mold","authors":"Xiao-Sheng Zhang, Bai-Hong Jin, Shi-Gan Chu, N. Peter, Fu-Yun Zhu, Hai-Xia Zhang","doi":"10.1109/MEMSYS.2013.6474245","DOIUrl":null,"url":null,"abstract":"This paper reports a single-step process to fabricate superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) membrane replicated directly from ultra-low-surface-energy MNDS silicon substrate at high temperature without surfactant coating. MNDS silicon surface with ultra-low surface energy was simply fabricated by an improved deep reactive ion etching (DRIE) process. The huge reduction of surface energy and the formation of high-density nanostructures (i.e. nanotips) on well-designed microstructures (i.e. inverted pyramids and V-shape grooves) were realized simultaneously due to the enhancement of passivation step of DRIE process. Therefore, the high-temperature thermal cross-linking process, even higher than 180°C, can be directly utilized on the pattern replication of PDMS without surfactant coating to strengthen the precision. After studying of heating temperature and time, the MNDS PDMS membrane with the static contact angle (CA) of ~151° was realized at the optimized temperature of 85°C after 1-hour heating. The plasma treatment of the same improved DRIE process was utilized to enhance the hydrophobicity. The CA achieved up to more than 160°, while the CA hysteresis was reduced to below 10°.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper reports a single-step process to fabricate superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) membrane replicated directly from ultra-low-surface-energy MNDS silicon substrate at high temperature without surfactant coating. MNDS silicon surface with ultra-low surface energy was simply fabricated by an improved deep reactive ion etching (DRIE) process. The huge reduction of surface energy and the formation of high-density nanostructures (i.e. nanotips) on well-designed microstructures (i.e. inverted pyramids and V-shape grooves) were realized simultaneously due to the enhancement of passivation step of DRIE process. Therefore, the high-temperature thermal cross-linking process, even higher than 180°C, can be directly utilized on the pattern replication of PDMS without surfactant coating to strengthen the precision. After studying of heating temperature and time, the MNDS PDMS membrane with the static contact angle (CA) of ~151° was realized at the optimized temperature of 85°C after 1-hour heating. The plasma treatment of the same improved DRIE process was utilized to enhance the hydrophobicity. The CA achieved up to more than 160°, while the CA hysteresis was reduced to below 10°.
超低表面能模具单步制备超疏水微纳双尺度PDMS膜
本文报道了在低温下由超低表面能微纳双尺度(MNDS)聚二甲基硅氧烷(PDMS)衬底在高温下直接复制超疏水微纳双尺度(MNDS)聚二甲基硅氧烷(PDMS)薄膜的单步制备工艺。采用改进的深度反应离子刻蚀(DRIE)工艺制备了具有超低表面能的MNDS硅表面。由于DRIE工艺钝化步骤的加强,在设计良好的微结构(即倒金字塔和v型凹槽)上,表面能的大幅降低和高密度纳米结构(即纳米尖)的形成同时实现。因此,可以直接利用甚至高于180℃的高温热交联工艺,在不涂表面活性剂的PDMS上进行图案复制,以增强精度。通过对加热温度和时间的研究,在85℃的优化温度下,经过1小时的加热,获得了静态接触角(CA)为~151°的MNDS PDMS膜。采用改进的等离子体处理技术,提高了材料的疏水性。CA达到了160°以上,而CA迟滞降低到10°以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信