Causal inference in AI education: A primer

IF 1.7 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
A. Forney, Scott Mueller
{"title":"Causal inference in AI education: A primer","authors":"A. Forney, Scott Mueller","doi":"10.1515/jci-2021-0048","DOIUrl":null,"url":null,"abstract":"Abstract The study of causal inference has seen recent momentum in machine learning and artificial intelligence (AI), particularly in the domains of transfer learning, reinforcement learning, automated diagnostics, and explainability (among others). Yet, despite its increasing application to address many of the boundaries in modern AI, causal topics remain absent in most AI curricula. This work seeks to bridge this gap by providing classroom-ready introductions that integrate into traditional topics in AI, suggests intuitive graphical tools for the application to both new and traditional lessons in probabilistic and causal reasoning, and presents avenues for instructors to impress the merit of climbing the “causal hierarchy” to address problems at the levels of associational, interventional, and counterfactual inference. Finally, this study shares anecdotal instructor experiences, successes, and challenges integrating these lessons at multiple levels of education.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"2015 1","pages":"141 - 173"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2021-0048","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract The study of causal inference has seen recent momentum in machine learning and artificial intelligence (AI), particularly in the domains of transfer learning, reinforcement learning, automated diagnostics, and explainability (among others). Yet, despite its increasing application to address many of the boundaries in modern AI, causal topics remain absent in most AI curricula. This work seeks to bridge this gap by providing classroom-ready introductions that integrate into traditional topics in AI, suggests intuitive graphical tools for the application to both new and traditional lessons in probabilistic and causal reasoning, and presents avenues for instructors to impress the merit of climbing the “causal hierarchy” to address problems at the levels of associational, interventional, and counterfactual inference. Finally, this study shares anecdotal instructor experiences, successes, and challenges integrating these lessons at multiple levels of education.
人工智能教育中的因果推理:入门
因果推理的研究最近在机器学习和人工智能(AI)领域有了很大的发展势头,特别是在迁移学习、强化学习、自动诊断和可解释性等领域。然而,尽管它越来越多地应用于解决现代人工智能中的许多边界,但大多数人工智能课程中仍然缺乏因果主题。这项工作旨在通过提供课堂准备的介绍来弥合这一差距,这些介绍融入了人工智能的传统主题,为应用于概率和因果推理的新课程和传统课程提供了直观的图形工具,并为教师提供了途径,让他们深刻认识到攀登“因果层次”的优点,以解决关联、干预和反事实推理层面的问题。最后,本研究分享了讲师的经验、成功经验和挑战,并将这些课程整合到多个层次的教育中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信