Stiefel–Whitney classes of representations of SL(2, 𝑞)

Pub Date : 2023-02-28 DOI:10.1515/jgth-2022-0164
Neha Malik, S. Spallone
{"title":"Stiefel–Whitney classes of representations of SL(2, 𝑞)","authors":"Neha Malik, S. Spallone","doi":"10.1515/jgth-2022-0164","DOIUrl":null,"url":null,"abstract":"Abstract We describe the Stiefel–Whitney classes (SWCs) of orthogonal representations 𝜋 of the finite special linear groups G = SL ⁡ ( 2 , F q ) G=\\operatorname{SL}(2,\\mathbb{F}_{q}) , in terms of character values of 𝜋. From this calculation, we can answer interesting questions about SWCs of 𝜋. For instance, we determine the subalgebra of H * ⁢ ( G , Z / 2 ⁢ Z ) H^{*}(G,\\mathbb{Z}/2\\mathbb{Z}) generated by the SWCs of orthogonal 𝜋, and we also determine which 𝜋 have non-trivial mod 2 Euler class.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We describe the Stiefel–Whitney classes (SWCs) of orthogonal representations 𝜋 of the finite special linear groups G = SL ⁡ ( 2 , F q ) G=\operatorname{SL}(2,\mathbb{F}_{q}) , in terms of character values of 𝜋. From this calculation, we can answer interesting questions about SWCs of 𝜋. For instance, we determine the subalgebra of H * ⁢ ( G , Z / 2 ⁢ Z ) H^{*}(G,\mathbb{Z}/2\mathbb{Z}) generated by the SWCs of orthogonal 𝜋, and we also determine which 𝜋 have non-trivial mod 2 Euler class.
分享
查看原文
SL(2,𝑞)表示的Stiefel-Whitney类
摘要描述了有限特殊线性群G= SL (2, F q) G=\operatorname{SL}(2,\mathbb{F}_{q})的正交表示的Stiefel-Whitney类(SWCs)。从这个计算中,我们可以回答一些关于量子力学的有趣问题。例如,我们确定了正交SWCs生成的H * * (G, Z /2) H^{*}(G,\mathbb{Z}/2\mathbb{Z})的子代数,并确定了哪些是非平凡模2欧拉类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信