Instanton Floer homology, sutures, and Euler characteristics

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhenkun Li, Fan Ye
{"title":"Instanton Floer homology, sutures, and Euler characteristics","authors":"Zhenkun Li, Fan Ye","doi":"10.4171/qt/182","DOIUrl":null,"url":null,"abstract":"This is a companion paper to an earlier work of the authors. In this paper, we provide an axiomatic definition of Floer homology for balanced sutured manifolds and prove that the graded Euler characteristic $\\chi_{\\rm gr}$ of this homology is fully determined by the axioms we proposed. As a result, we conclude that $\\chi_{\\rm gr}(SHI(M,\\gamma))=\\chi_{\\rm gr}(SFH(M,\\gamma))$ for any balanced sutured manifold $(M,\\gamma)$. In particular, for any link $L$ in $S^3$, the Euler characteristic $\\chi_{\\rm gr}(KHI(S^3,L))$ recovers the multi-variable Alexander polynomial of $L$, which generalizes the knot case. Combined with the authors' earlier work, we provide more examples of $(1,1)$-knots in lens spaces whose $KHI$ and $\\widehat{HFK}$ have the same dimension. Moreover, for a rationally null-homologous knot in a closed oriented 3-manifold $Y$, we construct canonical $\\mathbb{Z}_2$-gradings on $KHI(Y,K)$, the decomposition of $I^\\sharp(Y)$ discussed in the previous paper, and the minus version of instanton knot homology $\\underline{\\rm KHI}^-(Y,K)$ introduced by the first author.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/qt/182","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

Abstract

This is a companion paper to an earlier work of the authors. In this paper, we provide an axiomatic definition of Floer homology for balanced sutured manifolds and prove that the graded Euler characteristic $\chi_{\rm gr}$ of this homology is fully determined by the axioms we proposed. As a result, we conclude that $\chi_{\rm gr}(SHI(M,\gamma))=\chi_{\rm gr}(SFH(M,\gamma))$ for any balanced sutured manifold $(M,\gamma)$. In particular, for any link $L$ in $S^3$, the Euler characteristic $\chi_{\rm gr}(KHI(S^3,L))$ recovers the multi-variable Alexander polynomial of $L$, which generalizes the knot case. Combined with the authors' earlier work, we provide more examples of $(1,1)$-knots in lens spaces whose $KHI$ and $\widehat{HFK}$ have the same dimension. Moreover, for a rationally null-homologous knot in a closed oriented 3-manifold $Y$, we construct canonical $\mathbb{Z}_2$-gradings on $KHI(Y,K)$, the decomposition of $I^\sharp(Y)$ discussed in the previous paper, and the minus version of instanton knot homology $\underline{\rm KHI}^-(Y,K)$ introduced by the first author.
瞬花同源性、缝合线和欧拉特性
这是作者早期工作的配套论文。本文给出了平衡缝合线流形的花同调的一个公理定义,并证明了该同调的梯度欧拉特征$\chi_{\rm gr}$完全由所提出的公理决定。因此,我们得出结论$\chi_{\rm gr}(SHI(M,\gamma))=\chi_{\rm gr}(SFH(M,\gamma))$对于任何平衡缝合流形$(M,\gamma)$。特别地,对于$S^3$中的任意环节$L$,欧拉特征$\chi_{\rm gr}(KHI(S^3,L))$恢复了$L$的多变量Alexander多项式,推广了打结情况。结合作者早期的工作,我们提供了更多的$KHI$和$\widehat{HFK}$具有相同维度的透镜空间中的$(1,1)$ -结的例子。此外,对于封闭定向3流形$Y$中的理性零同源结,我们构造了$KHI(Y,K)$上的正则$\mathbb{Z}_2$ -分级,前文中讨论的$I^\sharp(Y)$的分解,以及第一作者引入的瞬子结同源的负版本$\underline{\rm KHI}^-(Y,K)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信