{"title":"A new frequency selective surface power plane with broad band rejection for simultaneous switching noise on high-speed printed circuit boards","authors":"Ting-Kuang Wang, Chien-Chung Wang, Sin-Ting Chen, Yen-Hui Lin, Tzong-Lin Wu","doi":"10.1109/ISEMC.2005.1513656","DOIUrl":null,"url":null,"abstract":"A novel L-bridged frequency selective surface (FSS) power/ground planes is proposed with super-broadband rejection for simultaneous switch noise (SSN) from 600 Mz to 4.6 GHz. The L-shaped bridge design on the FSS power plane not only broadens the stop-band bandwidth, but also increases the mutual coupling between the adjacent FSS cells with allowing the significant decrease of the gap between the cells. It is found the small gap design can ease the degradation of the signal quality for the signal referring to the perforated FSS power plane. The excellent SSN suppression performance with keeping reasonably good signal integrity for the proposed structure is validated both experimentally and numerically. Good agreement is seen.","PeriodicalId":6459,"journal":{"name":"2005 International Symposium on Electromagnetic Compatibility, 2005. EMC 2005.","volume":"24 1","pages":"917-920 Vol. 3"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Electromagnetic Compatibility, 2005. EMC 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2005.1513656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A novel L-bridged frequency selective surface (FSS) power/ground planes is proposed with super-broadband rejection for simultaneous switch noise (SSN) from 600 Mz to 4.6 GHz. The L-shaped bridge design on the FSS power plane not only broadens the stop-band bandwidth, but also increases the mutual coupling between the adjacent FSS cells with allowing the significant decrease of the gap between the cells. It is found the small gap design can ease the degradation of the signal quality for the signal referring to the perforated FSS power plane. The excellent SSN suppression performance with keeping reasonably good signal integrity for the proposed structure is validated both experimentally and numerically. Good agreement is seen.