{"title":"An efficient algorithm to verify generalized false paths","authors":"O. Coudert","doi":"10.1145/1837274.1837321","DOIUrl":null,"url":null,"abstract":"Timing exception verification has become a center of interest as incorrect constraints can lead to chip failures. Proving that a false path is valid or not is a difficult problem because of the inherent computational cost, and because in practice false paths are not specified one full path at a time. Instead designers use generalized false paths, which represent a set of paths. For instance the SDC format (Synopsys Design Constraint) specifies false path exceptions using a “-from -through -to” syntax that applies on sets of pins, often using wildcards to denote these sets. This represents many (usually hundreds to thousands) actual full paths. This paper proposes a method to verify generalized false paths in a very efficient manner. It is shown to be about 10x faster than the current state-of-the-art, making false path verification an overnight task or less for multi-million gate designs.","PeriodicalId":87346,"journal":{"name":"Proceedings. Design Automation Conference","volume":"2 1","pages":"188-193"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1837274.1837321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Timing exception verification has become a center of interest as incorrect constraints can lead to chip failures. Proving that a false path is valid or not is a difficult problem because of the inherent computational cost, and because in practice false paths are not specified one full path at a time. Instead designers use generalized false paths, which represent a set of paths. For instance the SDC format (Synopsys Design Constraint) specifies false path exceptions using a “-from -through -to” syntax that applies on sets of pins, often using wildcards to denote these sets. This represents many (usually hundreds to thousands) actual full paths. This paper proposes a method to verify generalized false paths in a very efficient manner. It is shown to be about 10x faster than the current state-of-the-art, making false path verification an overnight task or less for multi-million gate designs.