J. Pérez-Morales, Hong Lu, W. Mu, I. Tunali, T. Kutuk, S. Eschrich, Y. Balagurunathan, R. Gillies, M. Schabath
{"title":"Volume doubling time and radiomic features predict tumor behavior of screen-detected lung cancers.","authors":"J. Pérez-Morales, Hong Lu, W. Mu, I. Tunali, T. Kutuk, S. Eschrich, Y. Balagurunathan, R. Gillies, M. Schabath","doi":"10.3233/cbm-210194","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nImage-based biomarkers could have translational implications by characterizing tumor behavior of lung cancers diagnosed during lung cancer screening. In this study, peritumoral and intratumoral radiomics and volume doubling time (VDT) were used to identify high-risk subsets of lung patients diagnosed in lung cancer screening that are associated with poor survival outcomes.\n\n\nMETHODS\nData and images were acquired from the National Lung Screening Trial. VDT was calculated between two consequent screening intervals approximately 1 year apart; peritumoral and intratumoral radiomics were extracted from the baseline screen. Overall survival (OS) was the main endpoint. Classification and Regression Tree analyses identified the most predictive covariates to classify patient outcomes.\n\n\nRESULTS\nDecision tree analysis stratified patients into three risk-groups (low, intermediate, and high) based on VDT and one radiomic feature (compactness). High-risk patients had extremely poor survival outcomes (hazard ratio [HR] = 8.15; 25% 5-year OS) versus low-risk patients (HR = 1.00; 83.3% 5-year OS). Among early-stage lung cancers, high-risk patients had poor survival outcomes (HR = 9.07; 44.4% 5-year OS) versus the low-risk group (HR = 1.00; 90.9% 5-year OS). For VDT, the decision tree analysis identified a novel cut-point of 279 days and using this cut-point VDT alone discriminated between aggressive (HR = 4.18; 45% 5-year OS) versus indolent/low-risk cancers (HR = 1.00; 82.8% 5-year OS).\n\n\nCONCLUSION\nWe utilized peritumoral and intratumoral radiomic features and VDT to generate a model that identify a high-risk group of screen-detected lung cancers associated with poor survival outcomes. These vulnerable subset of screen-detected lung cancers may be candidates for more aggressive surveillance/follow-up and treatment, such as adjuvant therapy.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/cbm-210194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
BACKGROUND
Image-based biomarkers could have translational implications by characterizing tumor behavior of lung cancers diagnosed during lung cancer screening. In this study, peritumoral and intratumoral radiomics and volume doubling time (VDT) were used to identify high-risk subsets of lung patients diagnosed in lung cancer screening that are associated with poor survival outcomes.
METHODS
Data and images were acquired from the National Lung Screening Trial. VDT was calculated between two consequent screening intervals approximately 1 year apart; peritumoral and intratumoral radiomics were extracted from the baseline screen. Overall survival (OS) was the main endpoint. Classification and Regression Tree analyses identified the most predictive covariates to classify patient outcomes.
RESULTS
Decision tree analysis stratified patients into three risk-groups (low, intermediate, and high) based on VDT and one radiomic feature (compactness). High-risk patients had extremely poor survival outcomes (hazard ratio [HR] = 8.15; 25% 5-year OS) versus low-risk patients (HR = 1.00; 83.3% 5-year OS). Among early-stage lung cancers, high-risk patients had poor survival outcomes (HR = 9.07; 44.4% 5-year OS) versus the low-risk group (HR = 1.00; 90.9% 5-year OS). For VDT, the decision tree analysis identified a novel cut-point of 279 days and using this cut-point VDT alone discriminated between aggressive (HR = 4.18; 45% 5-year OS) versus indolent/low-risk cancers (HR = 1.00; 82.8% 5-year OS).
CONCLUSION
We utilized peritumoral and intratumoral radiomic features and VDT to generate a model that identify a high-risk group of screen-detected lung cancers associated with poor survival outcomes. These vulnerable subset of screen-detected lung cancers may be candidates for more aggressive surveillance/follow-up and treatment, such as adjuvant therapy.