Upon a potential approach to regulate the targeting region of inhalable liposomes

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lei Shu, Zhengwei Huang, Ying Huang, Chuanbin Wu, Xin Pan
{"title":"Upon a potential approach to regulate the targeting region of inhalable liposomes","authors":"Lei Shu, Zhengwei Huang, Ying Huang, Chuanbin Wu, Xin Pan","doi":"10.1177/08839115221121862","DOIUrl":null,"url":null,"abstract":"Liposomes for inhalation have high biosafety and can achieve slow and controlled delivery, which are especially suitable for the treatment of lung diseases and have a promising clinical application prospect. However, liposomes for inhalation have the key bottleneck problem of the lack of strategies to control the targeting region, which restricts its clinical transformation. The root cause is the inability to control the bio-corona (BC) generation upon liposomes, which dominates the specific targeting regions. In order to overcome the above bottleneck, a high density hybrid liposome system based on distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] (DSPE-PEG) may be a potential choice. The PEG chain in DSPE-PEG has “stealth” effect that can hinder the adsorption of biological molecules. When the density of DSPE-PEG hybridization is high, the “stealth” effect is more significant, and the total adsorption amount of liposomal BC can be effectively reduced. By optimizing the PEG chain structures of DSPE-PEG, viz PEG chain length and terminal group modification, DSPE-PEG high density hybrid liposomes can be endowed with the function of targeting site regulation based on BC domination effect. It is believed that this proposed system can promote the profound reform of the research paradigm of inhalational liposomes, and accelerate the development of related products.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"54 1","pages":"480 - 486"},"PeriodicalIF":2.1000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115221121862","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Liposomes for inhalation have high biosafety and can achieve slow and controlled delivery, which are especially suitable for the treatment of lung diseases and have a promising clinical application prospect. However, liposomes for inhalation have the key bottleneck problem of the lack of strategies to control the targeting region, which restricts its clinical transformation. The root cause is the inability to control the bio-corona (BC) generation upon liposomes, which dominates the specific targeting regions. In order to overcome the above bottleneck, a high density hybrid liposome system based on distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] (DSPE-PEG) may be a potential choice. The PEG chain in DSPE-PEG has “stealth” effect that can hinder the adsorption of biological molecules. When the density of DSPE-PEG hybridization is high, the “stealth” effect is more significant, and the total adsorption amount of liposomal BC can be effectively reduced. By optimizing the PEG chain structures of DSPE-PEG, viz PEG chain length and terminal group modification, DSPE-PEG high density hybrid liposomes can be endowed with the function of targeting site regulation based on BC domination effect. It is believed that this proposed system can promote the profound reform of the research paradigm of inhalational liposomes, and accelerate the development of related products.
一种调节可吸入脂质体靶向区域的潜在方法
吸入用脂质体生物安全性高,可实现缓慢、可控的给药,特别适用于肺部疾病的治疗,具有广阔的临床应用前景。然而,吸入用脂质体的关键瓶颈问题是缺乏对靶向区域的控制策略,制约了其临床转化。根本原因是无法控制脂质体上的生物冠(BC)的产生,脂质体在特定靶向区域占主导地位。为了克服上述瓶颈,基于二硬脂酰- asn -甘油-3-磷酸乙醇胺- n-[甲氧基(聚乙二醇)](DSPE-PEG)的高密度杂化脂质体体系可能是一个潜在的选择。DSPE-PEG中的PEG链具有“隐身”作用,可以阻碍生物分子的吸附。当DSPE-PEG杂交密度较高时,“隐身”效应更为显著,可有效降低脂质体BC的总吸附量。通过对DSPE-PEG的PEG链结构进行优化,即PEG链长和末端基团修饰,使DSPE-PEG高密度杂交脂质体具有基于BC优势效应的靶向位点调控功能。相信该系统能够推动吸入性脂质体研究范式的深刻变革,加速相关产品的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bioactive and Compatible Polymers
Journal of Bioactive and Compatible Polymers 工程技术-材料科学:生物材料
CiteScore
3.50
自引率
0.00%
发文量
27
审稿时长
2 months
期刊介绍: The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信