A. Zysk, M. DeNichilo, Irene Zinonos, S. Hay, Vasilios Liapis, V. Ponomarev, A. Zannettino, A. Evdokiou, V. Panagopoulos
{"title":"Zoledronate Enhances the Cytotoxicity of Gamma Delta T Cell Immunotherapy in an Orthotopic Mouse Model of Osteolytic Osteosarcoma","authors":"A. Zysk, M. DeNichilo, Irene Zinonos, S. Hay, Vasilios Liapis, V. Ponomarev, A. Zannettino, A. Evdokiou, V. Panagopoulos","doi":"10.4172/1948-5956.1000554","DOIUrl":null,"url":null,"abstract":"Objective: Osteosarcoma is the most common primary tumor of the bone, predominantly affecting children and adolescents. While localized osteosarcoma can be readily treated with the use of pre-operative chemotherapy in combination with surgery, patients who develop metastatic disease and tumor-induced osteolysis continue to have a poor prognosis. Many cancer cells express tumor-specific antigens, rendering them vulnerable to immune effector T cell killing. There is increasing evidence that highly cytotoxic gamma delta (Vγ9Vδ2) T cells together with the bone anti-resorptive drug zoledronate may hold significant clinical benefit in the treatment of a variety of tumor types. Methods: Ex vivo expanded Vγ9Vδ2 T cells were used to assess effector-mediated killing of osteosarcoma cells (BTK-143 and K-HOS) in response to zoledronate pre-treatment. An orthotopic mouse model of osteolytic osteosarcoma was used to verify Vγ9Vδ2 T cell cytotoxicity in combination with zoledronate on tumor growth, osteolysis and metastasis. Results: Pre-treatment of osteosarcoma cells with zoledronate enhanced Vγ9Vδ2 T cell rapid killing compared to untreated cells in vitro via blockade of the mevalonate pathway. When adoptively transferred into osteosarcoma bearing NOD/SCID mice in vivo, Vγ9Vδ2 T cells in combination with zoledronate potentiated the anti-cancer efficacy of Vγ9Vδ2T cells and inhibited tumor induced osteolysis. Importantly, Vγ9Vδ2 T cells alone reduced both the incidence and burden of lung metastases. Conclusion: This study demonstrated the dual-action of zoledronate to enhance the immunogenicity of osteosarcoma cells to Vγ9Vδ2 T cell cytotoxicity and provide protection against tumor-induced osteolysis.","PeriodicalId":15170,"journal":{"name":"Journal of Cancer Science & Therapy","volume":"68 9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Science & Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/1948-5956.1000554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Osteosarcoma is the most common primary tumor of the bone, predominantly affecting children and adolescents. While localized osteosarcoma can be readily treated with the use of pre-operative chemotherapy in combination with surgery, patients who develop metastatic disease and tumor-induced osteolysis continue to have a poor prognosis. Many cancer cells express tumor-specific antigens, rendering them vulnerable to immune effector T cell killing. There is increasing evidence that highly cytotoxic gamma delta (Vγ9Vδ2) T cells together with the bone anti-resorptive drug zoledronate may hold significant clinical benefit in the treatment of a variety of tumor types. Methods: Ex vivo expanded Vγ9Vδ2 T cells were used to assess effector-mediated killing of osteosarcoma cells (BTK-143 and K-HOS) in response to zoledronate pre-treatment. An orthotopic mouse model of osteolytic osteosarcoma was used to verify Vγ9Vδ2 T cell cytotoxicity in combination with zoledronate on tumor growth, osteolysis and metastasis. Results: Pre-treatment of osteosarcoma cells with zoledronate enhanced Vγ9Vδ2 T cell rapid killing compared to untreated cells in vitro via blockade of the mevalonate pathway. When adoptively transferred into osteosarcoma bearing NOD/SCID mice in vivo, Vγ9Vδ2 T cells in combination with zoledronate potentiated the anti-cancer efficacy of Vγ9Vδ2T cells and inhibited tumor induced osteolysis. Importantly, Vγ9Vδ2 T cells alone reduced both the incidence and burden of lung metastases. Conclusion: This study demonstrated the dual-action of zoledronate to enhance the immunogenicity of osteosarcoma cells to Vγ9Vδ2 T cell cytotoxicity and provide protection against tumor-induced osteolysis.