Pathfinding for Mobile Robot Navigation by Exerting the Quarter-Sweep Modified Accelerated Overrelaxation (QSMAOR) Iterative Approach via the Laplacian Operator

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY
A. A. Dahalan, A. Saudi, J. Sulaiman
{"title":"Pathfinding for Mobile Robot Navigation by Exerting the Quarter-Sweep Modified Accelerated Overrelaxation (QSMAOR) Iterative Approach via the Laplacian Operator","authors":"A. A. Dahalan, A. Saudi, J. Sulaiman","doi":"10.1155/2022/9388146","DOIUrl":null,"url":null,"abstract":"Mobile robots are often in a situation where they need to find a bump-free path or navigation in their environment from any starting to a specific target point. Within this study, improving the navigation problem of a mobile robot iteratively by using a numerical method based on the potential field method is one of the main aims. This potential field will lean on the use of Laplace’s equation to restrain the formation of a potential function across regions within the mobile robot configuration area. The present paper proposed a Quarter-Sweep Modified Accelerated Overrelaxation (QSMAOR) approach to improve the pathfinding of mobile robots in a given environment. The experiment shows that, by using a finite difference method, it is capable of producing an optimal path and creating a smooth path between the starting and target point. The results of the simulation also show that this numerical approach works more rapidly and provides a smoother/clearer direction than the previous study.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9388146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Mobile robots are often in a situation where they need to find a bump-free path or navigation in their environment from any starting to a specific target point. Within this study, improving the navigation problem of a mobile robot iteratively by using a numerical method based on the potential field method is one of the main aims. This potential field will lean on the use of Laplace’s equation to restrain the formation of a potential function across regions within the mobile robot configuration area. The present paper proposed a Quarter-Sweep Modified Accelerated Overrelaxation (QSMAOR) approach to improve the pathfinding of mobile robots in a given environment. The experiment shows that, by using a finite difference method, it is capable of producing an optimal path and creating a smooth path between the starting and target point. The results of the simulation also show that this numerical approach works more rapidly and provides a smoother/clearer direction than the previous study.
基于拉普拉斯算子的四分之一扫描修正加速超松弛(QSMAOR)迭代寻路方法
移动机器人经常处于这样一种情况,即它们需要在其环境中找到一条无颠簸的路径或导航,从任何起点到特定的目标点。在本研究中,利用基于势场法的数值方法迭代改进移动机器人的导航问题是主要目的之一。这个势场将依靠拉普拉斯方程的使用来抑制移动机器人构型区域内跨区域势函数的形成。本文提出了一种四分之一扫描修正加速过松弛(QSMAOR)方法来改善给定环境下移动机器人的寻路能力。实验表明,利用有限差分法可以产生最优路径,并在起始点和目标点之间形成平滑路径。仿真结果还表明,与以往的研究相比,该数值方法工作速度更快,提供了更流畅/更清晰的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modelling and Simulation in Engineering
Modelling and Simulation in Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
3.10%
发文量
42
审稿时长
18 weeks
期刊介绍: Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信