{"title":"Concentrations of CHCl3, C2HCl3, C2Cl4, CHBr3 and CHBr2Cl in the South Yellow Sea and the East China Sea during autumn","authors":"Zhen He, J. Ni, Guipeng Yang, H. Yu, Jing Zhang","doi":"10.1071/en21073","DOIUrl":null,"url":null,"abstract":"Environmental context Atmospheric trace gases called volatile halocarbons (VHCs) significantly contribute to ozone depletion and global warming. The oceans are a primary source of VHCs, and concentrations and fluxes of selected VHCs in the Yellow Sea and East China Sea were measured. These data, and the influence of marine environmental factors on these parameters, provide information which will permit the assessment of the marine contribution of VHC behaviour and impact. Abstract Concentrations of five volatile halocarbons (VHCs), that is, chloroform (CHCl3), trichloroethylene (C2HCl3), tetrachloroethylene (C2Cl4), bromoform (CHBr3) and chlorodibromomethane (CHBr2Cl), were measured in the South Yellow Sea (SYS) and East China Sea (ECS) during autumn in 2011. The average (min–max) concentrations of CHCl3, C2HCl3, C2Cl4, CHBr2Cl and CHBr3 in surface seawater were 63.91 (24.63–361.23), 28.46 (1.82–85.77), 21.04 (9.85–89.31), 20.92 (7.98–59.89) and 75.91 (0.04–537.04) pmol L−1 respectively. The five VHCs exhibited a point distribution in autumn with clearly defined patterns in certain areas. In the vertical profiles, the highest concentrations of VHCs generally appeared in the upper mixing layer. Different VHCs were correlated with different environmental parameters, such as temperature, salinity, chlorophyll a (Chl-a), nutrient levels and bacteria. These results revealed that the sources of these VHCs were influenced by the Yangtze River effluent and Kuroshio waters as well as the biogenic release. Diurnal bimodal cycles were obvious in the concentrations of the five VHCs in the ECS. In general, concentrations peaked around noon, likely owing to biological production and photochemical mechanisms, and a secondary peak occurred around midnight, possibly resulting from a combination of respiration, zooplankton feeding and tidal action. The estimated sea-to-air fluxes showed that the study area was a net source of the five VHCs in the atmosphere during the study period.","PeriodicalId":11714,"journal":{"name":"Environmental Chemistry","volume":"2 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/en21073","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Environmental context Atmospheric trace gases called volatile halocarbons (VHCs) significantly contribute to ozone depletion and global warming. The oceans are a primary source of VHCs, and concentrations and fluxes of selected VHCs in the Yellow Sea and East China Sea were measured. These data, and the influence of marine environmental factors on these parameters, provide information which will permit the assessment of the marine contribution of VHC behaviour and impact. Abstract Concentrations of five volatile halocarbons (VHCs), that is, chloroform (CHCl3), trichloroethylene (C2HCl3), tetrachloroethylene (C2Cl4), bromoform (CHBr3) and chlorodibromomethane (CHBr2Cl), were measured in the South Yellow Sea (SYS) and East China Sea (ECS) during autumn in 2011. The average (min–max) concentrations of CHCl3, C2HCl3, C2Cl4, CHBr2Cl and CHBr3 in surface seawater were 63.91 (24.63–361.23), 28.46 (1.82–85.77), 21.04 (9.85–89.31), 20.92 (7.98–59.89) and 75.91 (0.04–537.04) pmol L−1 respectively. The five VHCs exhibited a point distribution in autumn with clearly defined patterns in certain areas. In the vertical profiles, the highest concentrations of VHCs generally appeared in the upper mixing layer. Different VHCs were correlated with different environmental parameters, such as temperature, salinity, chlorophyll a (Chl-a), nutrient levels and bacteria. These results revealed that the sources of these VHCs were influenced by the Yangtze River effluent and Kuroshio waters as well as the biogenic release. Diurnal bimodal cycles were obvious in the concentrations of the five VHCs in the ECS. In general, concentrations peaked around noon, likely owing to biological production and photochemical mechanisms, and a secondary peak occurred around midnight, possibly resulting from a combination of respiration, zooplankton feeding and tidal action. The estimated sea-to-air fluxes showed that the study area was a net source of the five VHCs in the atmosphere during the study period.
期刊介绍:
Environmental Chemistry publishes manuscripts addressing the chemistry of the environment (air, water, earth, and biota), including the behaviour and impacts of contaminants and other anthropogenic disturbances. The scope encompasses atmospheric chemistry, geochemistry and biogeochemistry, climate change, marine and freshwater chemistry, polar chemistry, fire chemistry, soil and sediment chemistry, and chemical aspects of ecotoxicology. Papers that take an interdisciplinary approach, while advancing our understanding of the linkages between chemistry and physical or biological processes, are particularly encouraged.
While focusing on the publication of important original research and timely reviews, the journal also publishes essays and opinion pieces on issues of importance to environmental scientists, such as policy and funding.
Papers should be written in a style that is accessible to those outside the field, as the readership will include - in addition to chemists - biologists, toxicologists, soil scientists, and workers from government and industrial institutions. All manuscripts are rigorously peer-reviewed and professionally copy-edited.
Environmental Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.