{"title":"Model improvements to simulate charging in scanning electron microscope","authors":"K. Arat, T. Klimpel, C. W. Hagen","doi":"10.1117/1.JMM.18.4.044003","DOIUrl":null,"url":null,"abstract":"Abstract. Background: Charging of insulators is a complex phenomenon to simulate since the accuracy of the simulations is very sensitive to the interaction of electrons with matter and electric fields. Aim: In this study, we report model improvements for a previously developed Monte-Carlo simulator to more accurately simulate samples that charge. Approach: The improvements include both modeling of low energy electron scattering by first-principle approaches and charging of insulators by the redistribution of the charge carriers in the material with an electron beam-induced conductivity and a dielectric breakdown model. Results: The first-principle scattering models provide a more realistic charge distribution cloud in the material and a better match between noncharging simulations and experimental results. The improvements on the charging models, which mainly focus on the redistribution of the charge carriers, lead to a smoother distribution of the charges and better experimental agreement of charging simulations. Conclusions: Combined with a more accurate tracing of low energy electrons in the electric field, we managed to reproduce the dynamically changing charging contrast due to an induced positive surface potential.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"96 1","pages":"044003 - 044003"},"PeriodicalIF":1.5000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.18.4.044003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract. Background: Charging of insulators is a complex phenomenon to simulate since the accuracy of the simulations is very sensitive to the interaction of electrons with matter and electric fields. Aim: In this study, we report model improvements for a previously developed Monte-Carlo simulator to more accurately simulate samples that charge. Approach: The improvements include both modeling of low energy electron scattering by first-principle approaches and charging of insulators by the redistribution of the charge carriers in the material with an electron beam-induced conductivity and a dielectric breakdown model. Results: The first-principle scattering models provide a more realistic charge distribution cloud in the material and a better match between noncharging simulations and experimental results. The improvements on the charging models, which mainly focus on the redistribution of the charge carriers, lead to a smoother distribution of the charges and better experimental agreement of charging simulations. Conclusions: Combined with a more accurate tracing of low energy electrons in the electric field, we managed to reproduce the dynamically changing charging contrast due to an induced positive surface potential.