Guilherme Arthur Longhitano, Guilherme Bitencourt Nunes, Geovany Candido, Jorge Vicente Lopes da Silva
{"title":"The role of 3D printing during COVID-19 pandemic: a review.","authors":"Guilherme Arthur Longhitano, Guilherme Bitencourt Nunes, Geovany Candido, Jorge Vicente Lopes da Silva","doi":"10.1007/s40964-020-00159-x","DOIUrl":null,"url":null,"abstract":"<p><p>The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread through more than 180 countries, leading to diverse health systems overload around the world. Because of the high number of patients and the supply chain disruption, it generated a shortage of medical devices and personal protective equipment. In this context, initiatives from the additive manufacturing community emerged to fight the lack of devices. Diverse designs were produced and are currently being used in hospitals by patients and health workers. However, as some devices must follow strict standards, these products may not fulfill these standards. Therefore, to ensure the user's health, there is a need for understanding each device, their usage, and standards. This study reviews the use of additive manufacturing during COVID-19 pandemic. It gathers the source of several 3D printed devices such as face shields, face masks, valves, nasopharyngeal swabs, and others, discussing their use and regulatory issues. In this regard, the major drawbacks of the technology, addressed for the next pandemic scenario, are highlighted. Finally, some insights of the future of additive manufacturing during emergency are given and discussed.</p>","PeriodicalId":51298,"journal":{"name":"Multisensory Research","volume":"26 1","pages":"19-37"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685299/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multisensory Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40964-020-00159-x","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread through more than 180 countries, leading to diverse health systems overload around the world. Because of the high number of patients and the supply chain disruption, it generated a shortage of medical devices and personal protective equipment. In this context, initiatives from the additive manufacturing community emerged to fight the lack of devices. Diverse designs were produced and are currently being used in hospitals by patients and health workers. However, as some devices must follow strict standards, these products may not fulfill these standards. Therefore, to ensure the user's health, there is a need for understanding each device, their usage, and standards. This study reviews the use of additive manufacturing during COVID-19 pandemic. It gathers the source of several 3D printed devices such as face shields, face masks, valves, nasopharyngeal swabs, and others, discussing their use and regulatory issues. In this regard, the major drawbacks of the technology, addressed for the next pandemic scenario, are highlighted. Finally, some insights of the future of additive manufacturing during emergency are given and discussed.
期刊介绍:
Multisensory Research is an interdisciplinary archival journal covering all aspects of multisensory processing including the control of action, cognition and attention. Research using any approach to increase our understanding of multisensory perceptual, behavioural, neural and computational mechanisms is encouraged. Empirical, neurophysiological, psychophysical, brain imaging, clinical, developmental, mathematical and computational analyses are welcome. Research will also be considered covering multisensory applications such as sensory substitution, crossmodal methods for delivering sensory information or multisensory approaches to robotics and engineering. Short communications and technical notes that draw attention to new developments will be included, as will reviews and commentaries on current issues. Special issues dealing with specific topics will be announced from time to time. Multisensory Research is a continuation of Seeing and Perceiving, and of Spatial Vision.