A Kurtosis and Skewness Based Criterion for Model Selection on Gaussian Mixture

L. Wang, Jinwen Ma
{"title":"A Kurtosis and Skewness Based Criterion for Model Selection on Gaussian Mixture","authors":"L. Wang, Jinwen Ma","doi":"10.1109/BMEI.2009.5305528","DOIUrl":null,"url":null,"abstract":"The Gaussian mixture model is a powerful statistical tool in data modeling and analysis. Generally, the EM algorithm is utilized to learn the parameters of the Gaussian mixture. However, the EM algorithm is based on the maximum likelihood framework and cannot determine the number of Gaussians for a sample data set. In order to overcome this problem, we propose a new model selection criterion based on the kurtosis and skewness of the estimated Gaussians. Moreover, a new greedy EM algorithm is constructed via the kurtosis and skewness based criterion. The simulation results show that the proposed model selection criterion is efficient and the new greedy EM algorithm is feasible.","PeriodicalId":6389,"journal":{"name":"2009 2nd International Conference on Biomedical Engineering and Informatics","volume":"49 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2009.5305528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The Gaussian mixture model is a powerful statistical tool in data modeling and analysis. Generally, the EM algorithm is utilized to learn the parameters of the Gaussian mixture. However, the EM algorithm is based on the maximum likelihood framework and cannot determine the number of Gaussians for a sample data set. In order to overcome this problem, we propose a new model selection criterion based on the kurtosis and skewness of the estimated Gaussians. Moreover, a new greedy EM algorithm is constructed via the kurtosis and skewness based criterion. The simulation results show that the proposed model selection criterion is efficient and the new greedy EM algorithm is feasible.
基于峰度和偏度的高斯混合模型选择准则
高斯混合模型是一种强大的数据建模和分析统计工具。通常采用EM算法来学习高斯混合物的参数。然而,EM算法基于极大似然框架,无法确定样本数据集的高斯数。为了克服这一问题,我们提出了一种新的基于估计高斯分布峰度和偏度的模型选择准则。此外,基于峰度和偏度准则构造了一种新的贪婪EM算法。仿真结果表明,所提出的模型选择准则是有效的,新的贪婪EM算法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信