Performance Analysis of Most Prominent Machine Learning and Deep Learning Algorithms In Classifying Bangla Crime News Articles

Salma Tabashum, M. M. Hossain, Md. Ariful Islam, Mun Yea Mahafi Taz Zahara, Fahmida Naznin Fami
{"title":"Performance Analysis of Most Prominent Machine Learning and Deep Learning Algorithms In Classifying Bangla Crime News Articles","authors":"Salma Tabashum, M. M. Hossain, Md. Ariful Islam, Mun Yea Mahafi Taz Zahara, Fahmida Naznin Fami","doi":"10.1109/TENSYMP50017.2020.9230785","DOIUrl":null,"url":null,"abstract":"This work is dedicated to Bangla Crime Type Classification. As very few works had been done for Bangla crime classifier. To carry out this research, first we have developed a Bangla crime dataset which contains around 24,295 news articles and made most of them publicly available at github. Then we have built our crime classifier model and trained the classifier with our own dataset. We have analyzed word vectors like bag of words, TF-IDF in state-of-art machine learning algorithms as well as most promising semantic and syntactic word embeddings like Word2Vec, GloVe, fast-Text in both shallow and deep CNN and RNN to select best word embeddings for our classifier module. Finally we have summarized the experimental result in tabular form. We can see that significant improved accuracy can be achieved using deep learning algorithms over state-of-art machine learning algorithms in classifying Bangla crime data. The final experimental result shows that using shallow CNN with fastText,proposed model is able to achieve 93.70% accuracy.","PeriodicalId":6721,"journal":{"name":"2020 IEEE Region 10 Symposium (TENSYMP)","volume":"48 1","pages":"1273-1277"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP50017.2020.9230785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work is dedicated to Bangla Crime Type Classification. As very few works had been done for Bangla crime classifier. To carry out this research, first we have developed a Bangla crime dataset which contains around 24,295 news articles and made most of them publicly available at github. Then we have built our crime classifier model and trained the classifier with our own dataset. We have analyzed word vectors like bag of words, TF-IDF in state-of-art machine learning algorithms as well as most promising semantic and syntactic word embeddings like Word2Vec, GloVe, fast-Text in both shallow and deep CNN and RNN to select best word embeddings for our classifier module. Finally we have summarized the experimental result in tabular form. We can see that significant improved accuracy can be achieved using deep learning algorithms over state-of-art machine learning algorithms in classifying Bangla crime data. The final experimental result shows that using shallow CNN with fastText,proposed model is able to achieve 93.70% accuracy.
最突出的机器学习和深度学习算法在孟加拉犯罪新闻文章分类中的性能分析
这项工作是专门为孟加拉国犯罪类型分类。由于为孟加拉国犯罪分类所做的工作很少。为了开展这项研究,首先,我们开发了一个孟加拉国犯罪数据集,其中包含大约24,295篇新闻文章,并将其中大部分公开发布在github上。然后我们建立了我们的犯罪分类器模型,并用我们自己的数据集训练分类器。我们分析了最先进的机器学习算法中的词向量,如词袋,TF-IDF,以及最有前途的语义和句法词嵌入,如Word2Vec, GloVe,浅层和深层CNN和RNN中的fast-Text,为我们的分类器模块选择最佳词嵌入。最后以表格的形式总结了实验结果。我们可以看到,在对孟加拉国犯罪数据进行分类时,使用深度学习算法比最先进的机器学习算法可以显著提高准确性。最终的实验结果表明,使用fastText的浅层CNN,所提出的模型可以达到93.70%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信