Generalizations of k-dimensional Weisfeiler–Leman stabilization

A. Dawar, Danny Vagnozzi
{"title":"Generalizations of k-dimensional Weisfeiler–Leman\nstabilization","authors":"A. Dawar, Danny Vagnozzi","doi":"10.2140/moscow.2020.9.229","DOIUrl":null,"url":null,"abstract":"The family of Weisfeiler-Leman equivalences on graphs is a widely studied approximation of graph isomorphism with many different characterizations. We study these, and other approximations of isomorphism defined in terms of refinement operators and Schurian Polynomial Approximation Schemes (SPAS). The general framework of SPAS allows us to study a number of parameters of the refinement operators based on Weisfeiler-Leman refinement, logic with counting, lifts of Weisfeiler-Leman as defined by Evdokimov and Ponomarenko, and the invertible map test introduced by Dawar and Holm, and variations of these, and establish relationships between them.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2020.9.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The family of Weisfeiler-Leman equivalences on graphs is a widely studied approximation of graph isomorphism with many different characterizations. We study these, and other approximations of isomorphism defined in terms of refinement operators and Schurian Polynomial Approximation Schemes (SPAS). The general framework of SPAS allows us to study a number of parameters of the refinement operators based on Weisfeiler-Leman refinement, logic with counting, lifts of Weisfeiler-Leman as defined by Evdokimov and Ponomarenko, and the invertible map test introduced by Dawar and Holm, and variations of these, and establish relationships between them.
k维Weisfeiler-Lemanstabilization的推广
图上的Weisfeiler-Leman等价族是图同构的一个被广泛研究的近似,具有许多不同的表征。我们研究了这些,以及其他用细化算子和舒里多项式近似格式(SPAS)定义的同构近似。SPAS的一般框架允许我们研究基于Weisfeiler-Leman细化算子的一些参数、带计数的逻辑、Evdokimov和Ponomarenko定义的Weisfeiler-Leman提振以及Dawar和Holm引入的可逆映射检验,以及它们的变化,并建立它们之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信