Momentum filtering scheme of cooling atomic clouds for the Chinese Space Station

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Hui Li, Biao Wu, Jiachen Yu, X. Yuan, Xiaoji Zhou, Bin Wang, Weibiao Chen, Wei Xiong, Xuzong Chen
{"title":"Momentum filtering scheme of cooling atomic clouds for the Chinese Space Station","authors":"Hui Li, Biao Wu, Jiachen Yu, X. Yuan, Xiaoji Zhou, Bin Wang, Weibiao Chen, Wei Xiong, Xuzong Chen","doi":"10.3788/col202321.080201","DOIUrl":null,"url":null,"abstract":"To obtain cold atom samples with temperatures lower than 100 pK in the cold atom physics rack experiment of the Chinese Space Station, we propose to use the momentum filtering method for deep cooling of atoms. This paper introduces the experimental results of the momentum filtering method verified by our ground testing system. In the experiment, we designed a specific experimental sequence of standing-wave light pulses to control the temperature, atomic number, and size of the atomic cloud. The results show that the momentum filter can effectively and conveniently reduce the temperature of the atomic cloud and the energy of Bose – Einstein condensation, and can be flexibly combined with other cooling methods to enhance the cooling effect. This work provides a method for the atomic cooling scheme of the ultra-cold atomic system on the ground and on the space station, and shows a way of deep cooling atoms.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"22 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3788/col202321.080201","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

To obtain cold atom samples with temperatures lower than 100 pK in the cold atom physics rack experiment of the Chinese Space Station, we propose to use the momentum filtering method for deep cooling of atoms. This paper introduces the experimental results of the momentum filtering method verified by our ground testing system. In the experiment, we designed a specific experimental sequence of standing-wave light pulses to control the temperature, atomic number, and size of the atomic cloud. The results show that the momentum filter can effectively and conveniently reduce the temperature of the atomic cloud and the energy of Bose – Einstein condensation, and can be flexibly combined with other cooling methods to enhance the cooling effect. This work provides a method for the atomic cooling scheme of the ultra-cold atomic system on the ground and on the space station, and shows a way of deep cooling atoms.
中国空间站冷却原子云的动量滤波方案
为了在中国空间站冷原子物理架实验中获得温度低于100pk的冷原子样品,我们提出采用动量滤波方法对原子进行深度冷却。本文介绍了动量滤波方法的实验结果,并通过我们的地面测试系统进行了验证。在实验中,我们设计了特定的驻波光脉冲实验序列来控制原子云的温度、原子序数和大小。结果表明,动量过滤器可以有效、方便地降低原子云的温度和玻色-爱因斯坦凝聚的能量,并且可以灵活地与其他冷却方法相结合,以增强冷却效果。本工作为地面和空间站超冷原子系统的原子冷却方案提供了一种方法,展示了一种原子深度冷却的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Optics Letters
Chinese Optics Letters 物理-光学
CiteScore
5.60
自引率
20.00%
发文量
180
审稿时长
2.3 months
期刊介绍: Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc. COL is distinguished by its short review period (~30 days) and publication period (~100 days). With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信