Surface Topography Assessments of Spine Shape Change within the Day in Healthy Male Adults

Q4 Biochemistry, Genetics and Molecular Biology
Jianming Lu, Liangliang Xiang, Huw Wiltshire
{"title":"Surface Topography Assessments of Spine Shape Change within the Day in Healthy Male Adults","authors":"Jianming Lu, Liangliang Xiang, Huw Wiltshire","doi":"10.32604/mcb.2021.015993","DOIUrl":null,"url":null,"abstract":"Surface topography is a no-invasive, radiation-free method that can measure sufficient surface spine parameters by the structured back surface scan and a precise anatomical landmarks recognition. The purpose of the present study was to measure the spine shape parameter changes within the day via the DIERS Formetric 4D analysis system. Ten male healthy volunteers were recruited to participate in the experiment. All participants were sedentary people with the average sitting time during study or work t ≥ 8 h and without any back disease in the past six months. Data were analyzed by one-way ANOVA, which set time points within the day as variable and shape results as the dependent variable. The significant difference could be found for the trunk length VP-DM with a one-way ANOVA test of p = 0.011. There was a significant difference (p = 0.024) between time slots of 9 am and 7 pm with 95%CI (–15.83, –1.01) and MD –8.42. No significant difference statistically for the scoliosis angle and the p-value of the one-way ANOVA test is 0.715. There was no significant difference for trunk inclination VP-DM with a one-way ANOVA test of p = 0.284. Statistical analysis depicted no significant difference for the trunk imbalance VP-DM with a one-way ANOVA test of p = 0.730. Trunk length VP-DM was significantly decreased in the afternoon and evening. This may be a potential back pain risk for sedentary individuals. Regular physical activity and mild to moderate exercise are recommended to improve spinal stability and maintain spinal shape.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/mcb.2021.015993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Surface topography is a no-invasive, radiation-free method that can measure sufficient surface spine parameters by the structured back surface scan and a precise anatomical landmarks recognition. The purpose of the present study was to measure the spine shape parameter changes within the day via the DIERS Formetric 4D analysis system. Ten male healthy volunteers were recruited to participate in the experiment. All participants were sedentary people with the average sitting time during study or work t ≥ 8 h and without any back disease in the past six months. Data were analyzed by one-way ANOVA, which set time points within the day as variable and shape results as the dependent variable. The significant difference could be found for the trunk length VP-DM with a one-way ANOVA test of p = 0.011. There was a significant difference (p = 0.024) between time slots of 9 am and 7 pm with 95%CI (–15.83, –1.01) and MD –8.42. No significant difference statistically for the scoliosis angle and the p-value of the one-way ANOVA test is 0.715. There was no significant difference for trunk inclination VP-DM with a one-way ANOVA test of p = 0.284. Statistical analysis depicted no significant difference for the trunk imbalance VP-DM with a one-way ANOVA test of p = 0.730. Trunk length VP-DM was significantly decreased in the afternoon and evening. This may be a potential back pain risk for sedentary individuals. Regular physical activity and mild to moderate exercise are recommended to improve spinal stability and maintain spinal shape.
健康成年男性脊柱形状变化的表面形貌评估
表面形貌是一种无创、无辐射的方法,可以通过结构化的背部表面扫描和精确的解剖标志识别来测量足够的表面脊柱参数。本研究的目的是通过DIERS formmetric 4D分析系统测量脊柱形状参数在一天内的变化。我们招募了10名健康的男性志愿者参加实验。所有参与者都是久坐不动的人,在学习或工作期间平均坐着时间≥8小时,在过去6个月内没有任何背部疾病。数据分析采用单因素方差分析,以一天内的时间点为变量,形状结果为因变量。树干长度VP-DM的单因素方差分析p = 0.011,差异有统计学意义。上午9点与晚上7点之间有显著差异(p = 0.024), 95%CI (-15.83, -1.01), MD -8.42。脊柱侧弯角度差异无统计学意义,单因素方差分析p值为0.715。躯干倾斜度VP-DM差异无统计学意义,单因素方差分析p = 0.284。经单因素方差分析p = 0.730,主干失衡VP-DM无统计学差异。树干长度VP-DM在下午和晚上显著减少。对于久坐不动的人来说,这可能是潜在的背痛风险。建议定期进行身体活动和轻度至中度运动,以改善脊柱稳定性和保持脊柱形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular & Cellular Biomechanics
Molecular & Cellular Biomechanics CELL BIOLOGYENGINEERING, BIOMEDICAL&-ENGINEERING, BIOMEDICAL
CiteScore
1.70
自引率
0.00%
发文量
21
期刊介绍: The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信