{"title":"A Model of Semantic-Based Image Retrieval Using C-Tree and Neighbor Graph","authors":"Nguyen Vu Uyen Nhi, T. Le, Thanh The Van","doi":"10.4018/ijswis.295551","DOIUrl":null,"url":null,"abstract":"The problems of image mining and semantic image retrieval play an important role in many areas of life. In this paper, a semantic-based image retrieval system is proposed that relies on the combination of C-Tree, which was built in our previous work, and a neighbor graph (called Graph-CTree) to improve accuracy. The k-Nearest Neighbor (k-NN) algorithm is used to classify a set of similar images that are retrieved on Graph-CTree to create a set of visual words. An ontology framework for images is created semi-automatically. SPARQL query is automatically generated from visual words and retrieve on ontology for semantics image. The experiment was performed on image datasets, such as COREL, WANG, ImageCLEF, and Stanford Dogs, with precision values of 0.888473, 0.766473, 0.839814, and 0.826416, respectively. These results are compared with related works on the same image dataset, showing the effectiveness of the methods proposed here.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"37 1","pages":"1-23"},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.295551","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 12
Abstract
The problems of image mining and semantic image retrieval play an important role in many areas of life. In this paper, a semantic-based image retrieval system is proposed that relies on the combination of C-Tree, which was built in our previous work, and a neighbor graph (called Graph-CTree) to improve accuracy. The k-Nearest Neighbor (k-NN) algorithm is used to classify a set of similar images that are retrieved on Graph-CTree to create a set of visual words. An ontology framework for images is created semi-automatically. SPARQL query is automatically generated from visual words and retrieve on ontology for semantics image. The experiment was performed on image datasets, such as COREL, WANG, ImageCLEF, and Stanford Dogs, with precision values of 0.888473, 0.766473, 0.839814, and 0.826416, respectively. These results are compared with related works on the same image dataset, showing the effectiveness of the methods proposed here.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.