Rosanah Murugesu, M. Holyoak, H. Chow, S. Shahramian
{"title":"Linearization of mm-Wave Large-Scale Phased Arrays Using Near-Field Coupling Feedback for >10Gb/s Wireless Communication","authors":"Rosanah Murugesu, M. Holyoak, H. Chow, S. Shahramian","doi":"10.1109/IMS30576.2020.9223967","DOIUrl":null,"url":null,"abstract":"This paper proposes a digital predistortion (DPD) technique for power amplifiers (PAs) in a large-scale multi-tile millimeter-wave (mm-wave) TX/RX phased-array system. By utilizing the nearfield coupling feedback between TX and RX elements for observation, the proposed DPD can linearize the main beam of a transmitted signal over the range of possible steering angles without the need for any additional dedicated far-field DPD observation circuitry or hardware. The proposed DPD is evaluated by linearizing a 256-TX and 128-RX element array driven by a 2.5-GBaud 16/64-QAM signal centered at 90 GHz. A single set of DPD coefficients achieve up to 8.8-dB improvement in Noise Power Ratio (NPR) as well as up to 5.6-dB improvement in Adjacent Channel Power Ratio (ACPR) across the 120° azimuth and 100° elevation steering range of the antenna array. Wireless links also demonstrate EVM improvements of up to 5.1 dB at 10 Gb/s.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"1 1","pages":"1271-1274"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMS30576.2020.9223967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper proposes a digital predistortion (DPD) technique for power amplifiers (PAs) in a large-scale multi-tile millimeter-wave (mm-wave) TX/RX phased-array system. By utilizing the nearfield coupling feedback between TX and RX elements for observation, the proposed DPD can linearize the main beam of a transmitted signal over the range of possible steering angles without the need for any additional dedicated far-field DPD observation circuitry or hardware. The proposed DPD is evaluated by linearizing a 256-TX and 128-RX element array driven by a 2.5-GBaud 16/64-QAM signal centered at 90 GHz. A single set of DPD coefficients achieve up to 8.8-dB improvement in Noise Power Ratio (NPR) as well as up to 5.6-dB improvement in Adjacent Channel Power Ratio (ACPR) across the 120° azimuth and 100° elevation steering range of the antenna array. Wireless links also demonstrate EVM improvements of up to 5.1 dB at 10 Gb/s.