The classification of $3^n$ subfactors and related fusion categories

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Masaki Izumi
{"title":"The classification of $3^n$ subfactors and related fusion categories","authors":"Masaki Izumi","doi":"10.4171/QT/113","DOIUrl":null,"url":null,"abstract":"We investigate a (potentially infinite) series of subfactors, called $3^n$ subfactors, including $A_4$, $A_7$, and the Haagerup subfactor as the first three members corresponding to $n=1,2,3$. Generalizing our previous work for odd $n$, we further develop a Cuntz algebra method to construct $3^n$ subfactors and show that the classification of the $3^n$ subfactors and related fusion categories is reduced to explicit polynomial equations under a mild assumption, which automatically holds for odd $n$.In particular, our method with $n=4$ gives a uniform construction of 4 finite depth subfactors, up to dual,without intermediate subfactors of index $3+\\sqrt{5}$. It also provides a key step for a new construction of the Asaeda-Haagerup subfactor due to Grossman, Snyder, and the author.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/113","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15

Abstract

We investigate a (potentially infinite) series of subfactors, called $3^n$ subfactors, including $A_4$, $A_7$, and the Haagerup subfactor as the first three members corresponding to $n=1,2,3$. Generalizing our previous work for odd $n$, we further develop a Cuntz algebra method to construct $3^n$ subfactors and show that the classification of the $3^n$ subfactors and related fusion categories is reduced to explicit polynomial equations under a mild assumption, which automatically holds for odd $n$.In particular, our method with $n=4$ gives a uniform construction of 4 finite depth subfactors, up to dual,without intermediate subfactors of index $3+\sqrt{5}$. It also provides a key step for a new construction of the Asaeda-Haagerup subfactor due to Grossman, Snyder, and the author.
$3^n$子因子的分类及相关的融合范畴
我们研究了一个(可能无限的)子因子序列,称为$3^n$子因子,包括$A_4$, $A_7$和Haagerup子因子作为对应于$n=1,2,3$的前三个元素。在此基础上,我们进一步发展了一种构造3^n$子因子的Cuntz代数方法,并证明了3^n$子因子和相关融合类别的分类在一个温和的假设下可以简化为显式多项式方程,该假设自动适用于奇数$n$。特别地,我们的方法在$n=4$的情况下给出了4个有限深度子因子的统一构造,直到对偶,没有索引$3+\sqrt{5}$的中间子因子。由于Grossman、Snyder和作者的贡献,这也为Asaeda-Haagerup子因子的新构建提供了关键的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信