Moment approach for singular values distribution of a large auto-covariance matrix

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Qinwen Wang, Jianfeng Yao
{"title":"Moment approach for singular values distribution of a large auto-covariance matrix","authors":"Qinwen Wang, Jianfeng Yao","doi":"10.1214/15-AIHP693","DOIUrl":null,"url":null,"abstract":"Let $(\\varepsilon_{t})_{t>0}$ be a sequence of independent real random vectors of $p$-dimension and let $X_T= \\sum_{t=s+1}^{s+T}\\varepsilon_t\\varepsilon^T_{t-s}/T$ be the lag-$s$ ($s$ is a fixed positive integer) auto-covariance matrix of $\\varepsilon_t$. Since $X_T$ is not symmetric, we consider its singular values, which are the square roots of the eigenvalues of $X_TX^T_T$. Therefore, the purpose of this paper is to investigate the limiting behaviors of the eigenvalues of $X_TX^T_T$ in two aspects. First, we show that the empirical spectral distribution of its eigenvalues converges to a nonrandom limit $F$. Second, we establish the convergence of its largest eigenvalue to the right edge of $F$. Both results are derived using moment methods.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"135 1","pages":"1641-1666"},"PeriodicalIF":1.2000,"publicationDate":"2014-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AIHP693","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

Abstract

Let $(\varepsilon_{t})_{t>0}$ be a sequence of independent real random vectors of $p$-dimension and let $X_T= \sum_{t=s+1}^{s+T}\varepsilon_t\varepsilon^T_{t-s}/T$ be the lag-$s$ ($s$ is a fixed positive integer) auto-covariance matrix of $\varepsilon_t$. Since $X_T$ is not symmetric, we consider its singular values, which are the square roots of the eigenvalues of $X_TX^T_T$. Therefore, the purpose of this paper is to investigate the limiting behaviors of the eigenvalues of $X_TX^T_T$ in two aspects. First, we show that the empirical spectral distribution of its eigenvalues converges to a nonrandom limit $F$. Second, we establish the convergence of its largest eigenvalue to the right edge of $F$. Both results are derived using moment methods.
大自协方差矩阵奇异值分布的矩法
设$(\varepsilon_{t})_{t>0}$为$p$维的独立实随机向量序列,设$X_T= \sum_{t=s+1}^{s+T}\varepsilon_t\varepsilon^T_{t-s}/T$为$\varepsilon_t$的滞后- $s$ ($s$为固定正整数)自协方差矩阵。由于$X_T$不是对称的,我们考虑它的奇异值,即$X_TX^T_T$的特征值的平方根。因此,本文的目的是从两个方面研究$X_TX^T_T$的特征值的极限行为。首先,我们证明了其特征值的经验谱分布收敛于一个非随机极限$F$。其次,我们建立了其最大特征值到$F$右边的收敛性。这两个结果都是用矩量法得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信