Brianna J Buseman, T. Weber, J. A. Nasados, P. Bass, J. Buren, J. M. Lancaster, J. H. Smart, M. E. Doumit, G. Murdoch, W. Price, K. Insausti, M. Colle, B. J. Buseman, T. Weber, P. Bass, J. Buren, J. M. Lancaster, J. H. Smart, M. E. Doumit, G. Murdoch, W. Price, K. Insausti, M. Colle
{"title":"Free Calcium Concentration, Calpain-2 Activity, and Final Product Tenderness of Electrically Stimulated Beef","authors":"Brianna J Buseman, T. Weber, J. A. Nasados, P. Bass, J. Buren, J. M. Lancaster, J. H. Smart, M. E. Doumit, G. Murdoch, W. Price, K. Insausti, M. Colle, B. J. Buseman, T. Weber, P. Bass, J. Buren, J. M. Lancaster, J. H. Smart, M. E. Doumit, G. Murdoch, W. Price, K. Insausti, M. Colle","doi":"10.22175/mmb.10635","DOIUrl":null,"url":null,"abstract":"The objective of this study was to evaluate the effect of timing of electrical stimulation on free calcium concentration, calpain-2 activity, Warner-Bratzler shear force (WBSF), and consumer sensory analysis. Twenty-three beef steers were harvested and stimulated (S) using extra-low voltage or not stimulated (NS), at exsanguination and/or 1 h postmortem, resulting in 4 different stimulation treatments: NS-NS, NS-S, S-NS, or S-S. Samples were removed from the longissimus lumborum (LL) and semimembranosus (SM) for free calcium and calpain-2 analysis on days 1, 4, and 14 postmortem. WBSF and sensory analysis steaks were removed on day 4 and frozen (4 d) or aged to 14 d postmortem. Data were analyzed using the mixed model or generalized linear mixed model procedure of SAS (SAS Institute, Inc., Cary, NC), with significance determined at P < 0.05. There was a tendency for an aging-period-by-stimulation-treatment interaction for LL free calcium concentration (P = 0.05), and there was a significant difference between aging periods (P < 0.01). No difference was observed in free calcium concentration in the SM between stimulation treatments (P = 0.44); aging, however, significantly increased SM free calcium concentration (P < 0.01). Stimulation did not impact native calpain-2 activity in the LL (P = 0.71) or SM (P = 0.89). Stimulation treatment did not improve tenderness values for WBSF analysis for the LL (P = 0.69) or SM (P = 0.61) or consumer sensory analysis in the LL (P = 0.56) or SM (P = 0.36). A longer aging period tended to increase calpain-2 activity in the SM (P = 0.08), improve WBSF in the LL (P = 0.09), and significantly improve consumer tenderness scores in the SM (P < 0.01). In conclusion, the timing of electrical stimulation utilized in the current study tended to influence free calcium concentration in the LL but did not influence calpain-2 activity or beef tenderness. Aging, however, improved tenderness.","PeriodicalId":18316,"journal":{"name":"Meat and Muscle Biology","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meat and Muscle Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22175/mmb.10635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to evaluate the effect of timing of electrical stimulation on free calcium concentration, calpain-2 activity, Warner-Bratzler shear force (WBSF), and consumer sensory analysis. Twenty-three beef steers were harvested and stimulated (S) using extra-low voltage or not stimulated (NS), at exsanguination and/or 1 h postmortem, resulting in 4 different stimulation treatments: NS-NS, NS-S, S-NS, or S-S. Samples were removed from the longissimus lumborum (LL) and semimembranosus (SM) for free calcium and calpain-2 analysis on days 1, 4, and 14 postmortem. WBSF and sensory analysis steaks were removed on day 4 and frozen (4 d) or aged to 14 d postmortem. Data were analyzed using the mixed model or generalized linear mixed model procedure of SAS (SAS Institute, Inc., Cary, NC), with significance determined at P < 0.05. There was a tendency for an aging-period-by-stimulation-treatment interaction for LL free calcium concentration (P = 0.05), and there was a significant difference between aging periods (P < 0.01). No difference was observed in free calcium concentration in the SM between stimulation treatments (P = 0.44); aging, however, significantly increased SM free calcium concentration (P < 0.01). Stimulation did not impact native calpain-2 activity in the LL (P = 0.71) or SM (P = 0.89). Stimulation treatment did not improve tenderness values for WBSF analysis for the LL (P = 0.69) or SM (P = 0.61) or consumer sensory analysis in the LL (P = 0.56) or SM (P = 0.36). A longer aging period tended to increase calpain-2 activity in the SM (P = 0.08), improve WBSF in the LL (P = 0.09), and significantly improve consumer tenderness scores in the SM (P < 0.01). In conclusion, the timing of electrical stimulation utilized in the current study tended to influence free calcium concentration in the LL but did not influence calpain-2 activity or beef tenderness. Aging, however, improved tenderness.