A Model of Representational Spaces in Human Cortex

J. S. Guntupalli, Michael Hanke, Y. Halchenko, Andrew C. Connolly, P. Ramadge, J. Haxby
{"title":"A Model of Representational Spaces in Human Cortex","authors":"J. S. Guntupalli, Michael Hanke, Y. Halchenko, Andrew C. Connolly, P. Ramadge, J. Haxby","doi":"10.1093/cercor/bhw068","DOIUrl":null,"url":null,"abstract":"Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"34 1","pages":"2919 - 2934"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"166","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral Cortex (New York, NY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/cercor/bhw068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 166

Abstract

Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions.
人类皮层表征空间模型
目前人类皮层的功能结构模型强调捕捉皮层地形的粗尺度特征的区域,但没有考虑到以精细尺度的活动模式编码信息的群体反应。在这里,我们提出了一个人类皮层中共享表征空间的线性模型,该模型利用大脑中常见的响应调谐基函数捕捉了群体反应之间的细微差异,并利用个体特定的地形基函数模拟了神经反应的皮层模式。我们使用一种新的算法、探照灯超对准和复杂的动态刺激,为整个皮层提供了一个共同的模型空间,这些刺激提供了视觉、听觉和社会感知的广泛样本。该模型对大脑枕叶、颞叶、顶叶和前额叶皮层的表征进行了比对,如主体间多元模式分类和表征几何的主体间相关性所示,表明共享神经表征的结构原则适用于广泛不同的信息领域。该模型为众所周知的大尺度地形的个体可变性提供了严格的解释,例如视网膜病变和类别选择性,并进一步解释了与大尺度地形多路复用并具有更细微差异的小尺度模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信