Timo Noll, Charlotte Kuhn, Darius Olesch, Ralf Müller
{"title":"3D phase field simulations of ductile fracture","authors":"Timo Noll, Charlotte Kuhn, Darius Olesch, Ralf Müller","doi":"10.1002/gamm.202000008","DOIUrl":null,"url":null,"abstract":"<p>In this contribution a phase field model for ductile fracture with linear isotropic hardening is presented. An energy functional consisting of an elastic energy, a plastic dissipation potential and a Griffith type fracture energy constitutes the model. The application of an unaltered radial return algorithm on element level is possible due to the choice of an appropriate coupling between the nodal degrees of freedom, namely the displacement and the crack/fracture fields. The degradation function models the mentioned coupling by reducing the stiffness of the material and the plastic contribution of the energy density in broken material. Furthermore, to solve the global system of differential equations comprising the balance of linear momentum and the quasi-static Ginzburg-Landau type evolution equation, the application of a monolithic iterative solution scheme becomes feasible. The compact model is used to perform 3D simulations of fracture in tension. The computed plastic zones are compared to the dog-bone model that is used to derive validity criteria for <i>K</i><sub>IC</sub> measurements.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"43 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.202000008","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202000008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 21
Abstract
In this contribution a phase field model for ductile fracture with linear isotropic hardening is presented. An energy functional consisting of an elastic energy, a plastic dissipation potential and a Griffith type fracture energy constitutes the model. The application of an unaltered radial return algorithm on element level is possible due to the choice of an appropriate coupling between the nodal degrees of freedom, namely the displacement and the crack/fracture fields. The degradation function models the mentioned coupling by reducing the stiffness of the material and the plastic contribution of the energy density in broken material. Furthermore, to solve the global system of differential equations comprising the balance of linear momentum and the quasi-static Ginzburg-Landau type evolution equation, the application of a monolithic iterative solution scheme becomes feasible. The compact model is used to perform 3D simulations of fracture in tension. The computed plastic zones are compared to the dog-bone model that is used to derive validity criteria for KIC measurements.