3D phase field simulations of ductile fracture

Q1 Mathematics
Timo Noll, Charlotte Kuhn, Darius Olesch, Ralf Müller
{"title":"3D phase field simulations of ductile fracture","authors":"Timo Noll,&nbsp;Charlotte Kuhn,&nbsp;Darius Olesch,&nbsp;Ralf Müller","doi":"10.1002/gamm.202000008","DOIUrl":null,"url":null,"abstract":"<p>In this contribution a phase field model for ductile fracture with linear isotropic hardening is presented. An energy functional consisting of an elastic energy, a plastic dissipation potential and a Griffith type fracture energy constitutes the model. The application of an unaltered radial return algorithm on element level is possible due to the choice of an appropriate coupling between the nodal degrees of freedom, namely the displacement and the crack/fracture fields. The degradation function models the mentioned coupling by reducing the stiffness of the material and the plastic contribution of the energy density in broken material. Furthermore, to solve the global system of differential equations comprising the balance of linear momentum and the quasi-static Ginzburg-Landau type evolution equation, the application of a monolithic iterative solution scheme becomes feasible. The compact model is used to perform 3D simulations of fracture in tension. The computed plastic zones are compared to the dog-bone model that is used to derive validity criteria for <i>K</i><sub>IC</sub> measurements.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"43 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.202000008","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202000008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 21

Abstract

In this contribution a phase field model for ductile fracture with linear isotropic hardening is presented. An energy functional consisting of an elastic energy, a plastic dissipation potential and a Griffith type fracture energy constitutes the model. The application of an unaltered radial return algorithm on element level is possible due to the choice of an appropriate coupling between the nodal degrees of freedom, namely the displacement and the crack/fracture fields. The degradation function models the mentioned coupling by reducing the stiffness of the material and the plastic contribution of the energy density in broken material. Furthermore, to solve the global system of differential equations comprising the balance of linear momentum and the quasi-static Ginzburg-Landau type evolution equation, the application of a monolithic iterative solution scheme becomes feasible. The compact model is used to perform 3D simulations of fracture in tension. The computed plastic zones are compared to the dog-bone model that is used to derive validity criteria for KIC measurements.

Abstract Image

韧性断裂三维相场模拟
本文提出了一种具有线性各向同性硬化的韧性断裂相场模型。该模型由弹性能、塑性耗散势和Griffith型断裂能组成的能量泛函构成。由于节点自由度(即位移和裂纹/断裂场)之间选择了适当的耦合,因此可以在单元水平上应用不变的径向返回算法。退化函数通过降低材料的刚度和破碎材料中能量密度的塑性贡献来模拟上述耦合。此外,对于包含线性动量平衡和准静态Ginzburg-Landau型演化方程的全局微分方程组,采用整体迭代解方案变得可行。采用紧凑模型对拉伸断裂进行了三维模拟。计算的塑性区与狗骨模型进行了比较,该模型用于导出KIC测量的有效性标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信