V. Binyukov, E. Mil, L. Matienko, A. Albantova, A. Goloshchapov
{"title":"Methodic Approach of Atomic-Force Microscopy (AFM) to Study Morphological Changes of Cells and Model Systems","authors":"V. Binyukov, E. Mil, L. Matienko, A. Albantova, A. Goloshchapov","doi":"10.3390/micro3020026","DOIUrl":null,"url":null,"abstract":"For the first time AFM (atomic-force microscopy) was used to record significant changes in the geometric parameters of the image of erythrocytes in vitro under conditions of glycolytic starvation (ATP (Adenosine triphosphate) deficiency). The difference in the action of antioxidants, phenosan K, and Ihfan-10 on erythrocytes that we detected with AFM seems to be mainly due to their difference in hydrophobicity. We used the AFM method to research the self-organization of the components of the active center of P450 (Porphyrin-450) metalloenzymes that are part of a class of hemoproteins with functions of affinity to molecular oxygen O2. Stable supramolecular nanostructures in the form of triangular prisms based on the iron porphyrin complex with amino acids due to self-assembly involving intermolecular hydrogen bonds were received. A possible scheme for the formation of such structures is proposed.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"73 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3020026","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
For the first time AFM (atomic-force microscopy) was used to record significant changes in the geometric parameters of the image of erythrocytes in vitro under conditions of glycolytic starvation (ATP (Adenosine triphosphate) deficiency). The difference in the action of antioxidants, phenosan K, and Ihfan-10 on erythrocytes that we detected with AFM seems to be mainly due to their difference in hydrophobicity. We used the AFM method to research the self-organization of the components of the active center of P450 (Porphyrin-450) metalloenzymes that are part of a class of hemoproteins with functions of affinity to molecular oxygen O2. Stable supramolecular nanostructures in the form of triangular prisms based on the iron porphyrin complex with amino acids due to self-assembly involving intermolecular hydrogen bonds were received. A possible scheme for the formation of such structures is proposed.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics