Single-molecule nano-optoelectronics: insights from physics

IF 19 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Peihui Li, Li Zhou, Cong Zhao, Hongyu Ju, Qinghua Gao, Wei Si, Li Cheng, Jie Hao, Mengmeng Li, Yijian Chen, Chuancheng Jia, Xuefeng Guo
{"title":"Single-molecule nano-optoelectronics: insights from physics","authors":"Peihui Li, Li Zhou, Cong Zhao, Hongyu Ju, Qinghua Gao, Wei Si, Li Cheng, Jie Hao, Mengmeng Li, Yijian Chen, Chuancheng Jia, Xuefeng Guo","doi":"10.1088/1361-6633/ac7401","DOIUrl":null,"url":null,"abstract":"Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":null,"pages":null},"PeriodicalIF":19.0000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6633/ac7401","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
单分子纳米光电子学:来自物理学的见解
单分子光电器件有望在未来实现硅基微电子电路的小型化和功能化。经过几十年的快速发展,该领域在光电材料的合成、单分子器件的制造和光电功能的实现方面取得了重大进展。另一方面,单分子光电器件为在单分子水平上研究物质的内在物理现象和调控规律提供了可靠的平台。为了进一步实现和规范光电子功能走向实际应用,有必要明确单分子光电纳米器件的内在物理机制。本文对单分子光电材料和器件中涉及的物理现象和规律进行了综述,包括电荷效应、自旋效应、激子效应、振动效应、结构效应和轨道效应。特别是,我们将系统地总结分子光电材料的基础知识,以及单分子光电纳米器件的物理效应和操作。此外,单分子电子学的基本原理也是单分子光电子学的基础。最后,我们将重点讨论单分子光电子学领域面临的机遇和挑战,并提出进一步的潜在突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reports on Progress in Physics
Reports on Progress in Physics 物理-物理:综合
CiteScore
31.90
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信