{"title":"On a new class of two-variable functional equations on semigroups with involutions","authors":"Iz-iddine El-Fassi","doi":"10.1515/anly-2022-1071","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝑆 be a commutative semigroup, 𝐾 a quadratically closed commutative field of characteristic different from 2, 𝐺 a 2-cancellative abelian group and 𝐻 an abelian group uniquely divisible by 2. The goal of this paper is to find the general non-zero solution f : S 2 → K f\\colon S^{2}\\to K of the d’Alembert type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) f ( y , w ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\\sigma(y),z+\\tau(w))=2f(x,z)f(y,w),\\quad x,y,z,w\\in S, the general non-zero solution f : S 2 → G f\\colon S^{2}\\to G of the Jensen type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\\sigma(y),z+\\tau(w))=2f(x,z),\\quad x,y,z,w\\in S, the general non-zero solution f : S 2 → H f\\colon S^{2}\\to H of the quadratic type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) + 2 f ( y , w ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\\sigma(y),z+\\tau(w))=2f(x,z)+2f(y,w),\\quad x,y,z,w\\in S, where σ , τ : S → S \\sigma,\\tau\\colon S\\to S are two involutions.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2022-1071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let 𝑆 be a commutative semigroup, 𝐾 a quadratically closed commutative field of characteristic different from 2, 𝐺 a 2-cancellative abelian group and 𝐻 an abelian group uniquely divisible by 2. The goal of this paper is to find the general non-zero solution f : S 2 → K f\colon S^{2}\to K of the d’Alembert type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) f ( y , w ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\sigma(y),z+\tau(w))=2f(x,z)f(y,w),\quad x,y,z,w\in S, the general non-zero solution f : S 2 → G f\colon S^{2}\to G of the Jensen type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\sigma(y),z+\tau(w))=2f(x,z),\quad x,y,z,w\in S, the general non-zero solution f : S 2 → H f\colon S^{2}\to H of the quadratic type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) + 2 f ( y , w ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\sigma(y),z+\tau(w))=2f(x,z)+2f(y,w),\quad x,y,z,w\in S, where σ , τ : S → S \sigma,\tau\colon S\to S are two involutions.