Scheduling Mutual Exclusion Accesses in Equal-Length Jobs

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
D. Kagaris, S. Dutta
{"title":"Scheduling Mutual Exclusion Accesses in Equal-Length Jobs","authors":"D. Kagaris, S. Dutta","doi":"10.1145/3342562","DOIUrl":null,"url":null,"abstract":"A fundamental problem in parallel and distributed processing is the partial serialization that is imposed due to the need for mutually exclusive access to common resources. In this article, we investigate the problem of optimally scheduling (in terms of makespan) a set of jobs, where each job consists of the same number <i>L</i> of unit-duration tasks, and each task either accesses exclusively one resource from a given set of resources or accesses a fully shareable resource. We develop and establish the optimality of a fast polynomial-time algorithm to find a schedule with the shortest makespan for any number of jobs and for any number of resources for the case of <i>L</i> = 2. In the notation commonly used for job-shop scheduling problems, this result means that the problem <i>J</i> |<i>d</i><sub><i>ij</i></sub>=1, <i>n</i><sub><i>j</i></sub> =2|<i>C</i><sub>max</sub> is polynomially solvable, adding to the polynomial solutions known for the problems <i>J</i>2 | <i>n</i><sub><i>j</i></sub> ≤ 2 | <i>C</i><sub>max</sub> and <i>J</i>2 | <i>d</i><sub><i>ij</i></sub> = 1 | <i>C</i><sub>max</sub> (whereas other closely related versions such as <i>J</i>2 | <i>n</i><sub><i>j</i></sub> ≤ 3 | <i>C</i><sub>max</sub>, <i>J</i>2 | <i>d</i><sub><i>ij</i></sub> ∈ { 1,2} | <i>C</i><sub>max</sub>, <i>J</i>3 | <i>n</i><sub><i>j</i></sub> ≤ 2 | <i>C</i><sub>max</sub>, <i>J</i>3 | <i>d</i><sub><i>ij</i></sub>=1 | <i>C</i><sub>max</sub>, and <i>J</i> |<i>d</i><sub><i>ij</i></sub>=1, <i>n</i><sub><i>j</i></sub> ≤ 3| <i>C</i><sub>max</sub> are all known to be NP-complete). For the general case <i>L</i> > 2 (i.e., for the job-shop problem <i>J</i> |<i>d</i><sub><i>ij</i></sub>=1, <i>n</i><sub><i>j</i></sub> =<i>L</i>> 2| <i>C</i><sub>max</sub>), we present a competitive heuristic and provide experimental comparisons with other heuristic versions and, when possible, with the ideal integer linear programming formulation.","PeriodicalId":42115,"journal":{"name":"ACM Transactions on Parallel Computing","volume":"9 1","pages":"8:1-8:26"},"PeriodicalIF":0.9000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3342562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

A fundamental problem in parallel and distributed processing is the partial serialization that is imposed due to the need for mutually exclusive access to common resources. In this article, we investigate the problem of optimally scheduling (in terms of makespan) a set of jobs, where each job consists of the same number L of unit-duration tasks, and each task either accesses exclusively one resource from a given set of resources or accesses a fully shareable resource. We develop and establish the optimality of a fast polynomial-time algorithm to find a schedule with the shortest makespan for any number of jobs and for any number of resources for the case of L = 2. In the notation commonly used for job-shop scheduling problems, this result means that the problem J |dij=1, nj =2|Cmax is polynomially solvable, adding to the polynomial solutions known for the problems J2 | nj ≤ 2 | Cmax and J2 | dij = 1 | Cmax (whereas other closely related versions such as J2 | nj ≤ 3 | Cmax, J2 | dij ∈ { 1,2} | Cmax, J3 | nj ≤ 2 | Cmax, J3 | dij=1 | Cmax, and J |dij=1, nj ≤ 3| Cmax are all known to be NP-complete). For the general case L > 2 (i.e., for the job-shop problem J |dij=1, nj =L> 2| Cmax), we present a competitive heuristic and provide experimental comparisons with other heuristic versions and, when possible, with the ideal integer linear programming formulation.
调度等长作业中的互斥访问
并行和分布式处理中的一个基本问题是由于需要对公共资源进行互斥访问而导致的部分序列化。在本文中,我们研究最优调度一组作业的问题(就makespan而言),其中每个作业由相同数量的L个单位持续时间任务组成,每个任务要么只访问给定资源集中的一个资源,要么访问一个完全可共享的资源。我们开发并建立了一个快速多项式时间算法的最优性,用于在L = 2的情况下找到任意数量的作业和任意数量的资源具有最短完工时间的调度。符号常用的作业车间调度问题,这一结果意味着问题J | dij = 1, nj = 2 | Cmax可以用多项式来解决,增加问题的多项式解已知J2 | nj≤2 | Cmax和J2 | dij = 1 | Cmax(而其他密切相关的版本如J2 | nj≤3 | Cmax, J2 | dij∈{1,2}| Cmax, J3 | nj≤2 | Cmax, J3 | dij = 1 | Cmax,和J | dij = 1, nj≤3 | Cmax是所有已知的非完全多项式)。对于一般情况L> 2(即,对于job-shop问题J |dij=1, nj =L> 2| Cmax),我们提出了一个竞争性启发式,并提供了与其他启发式版本的实验比较,并且在可能的情况下,与理想整数线性规划公式进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Parallel Computing
ACM Transactions on Parallel Computing COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.10
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信