From space to biomedicine: Enabling biomarker data science in the cloud.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
D. Crichton, L. Cinquini, H. Kincaid, A. Mahabal, A. Altinok, K. Anton, M. Colbert, S. Kelly, D. Liu, C. Patriotis, S. Lombeyda, S. Srivastava
{"title":"From space to biomedicine: Enabling biomarker data science in the cloud.","authors":"D. Crichton, L. Cinquini, H. Kincaid, A. Mahabal, A. Altinok, K. Anton, M. Colbert, S. Kelly, D. Liu, C. Patriotis, S. Lombeyda, S. Srivastava","doi":"10.3233/cbm-210350","DOIUrl":null,"url":null,"abstract":"NASA's Jet Propulsion Laboratory (JPL) is advancing research capabilities for data science with two of the National Cancer Institute's major research programs, the Early Detection Research Network (EDRN) and the Molecular and Cellular Characterization of Screen-Detected Lesions (MCL), by enabling data-driven discovery for cancer biomarker research. The research team pioneered a national data science ecosystem for cancer biomarker research to capture, process, manage, share, and analyze data across multiple research centers. By collaborating on software and data-driven methods developed for space and earth science research, the biomarker research community is heavily leveraging similar capabilities to support the data and computational demands to analyze research data. This includes linking diverse data from clinical phenotypes to imaging to genomics. The data science infrastructure captures and links data from over 1600 annotations of cancer biomarkers to terabytes of analysis results on the cloud in a biomarker data commons known as \"LabCAS\". As the data increases in size, it is critical that automated approaches be developed to \"plug\" laboratories and instruments into a data science infrastructure to systematically capture and analyze data directly. This includes the application of artificial intelligence and machine learning to automate annotation and scale science analysis.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/cbm-210350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

NASA's Jet Propulsion Laboratory (JPL) is advancing research capabilities for data science with two of the National Cancer Institute's major research programs, the Early Detection Research Network (EDRN) and the Molecular and Cellular Characterization of Screen-Detected Lesions (MCL), by enabling data-driven discovery for cancer biomarker research. The research team pioneered a national data science ecosystem for cancer biomarker research to capture, process, manage, share, and analyze data across multiple research centers. By collaborating on software and data-driven methods developed for space and earth science research, the biomarker research community is heavily leveraging similar capabilities to support the data and computational demands to analyze research data. This includes linking diverse data from clinical phenotypes to imaging to genomics. The data science infrastructure captures and links data from over 1600 annotations of cancer biomarkers to terabytes of analysis results on the cloud in a biomarker data commons known as "LabCAS". As the data increases in size, it is critical that automated approaches be developed to "plug" laboratories and instruments into a data science infrastructure to systematically capture and analyze data directly. This includes the application of artificial intelligence and machine learning to automate annotation and scale science analysis.
从太空到生物医学:在云端实现生物标志物数据科学。
美国国家航空航天局喷气推进实验室(JPL)正在推进数据科学的研究能力,与国家癌症研究所的两个主要研究项目,早期检测研究网络(EDRN)和筛选检测病变(MCL)的分子和细胞表征,通过数据驱动发现癌症生物标志物研究。该研究团队开创了一个国家数据科学生态系统,用于癌症生物标志物研究,以捕获、处理、管理、共享和分析多个研究中心的数据。通过合作开发用于空间和地球科学研究的软件和数据驱动方法,生物标志物研究界正在大量利用类似的能力来支持分析研究数据的数据和计算需求。这包括连接从临床表型到成像到基因组学的各种数据。数据科学基础设施捕获并链接来自1600多个癌症生物标记物注释的数据,并将其链接到云上被称为“LabCAS”的生物标记物数据共享中的tb级分析结果。随着数据规模的增加,开发自动化方法将实验室和仪器“插入”到数据科学基础设施中,以系统地直接捕获和分析数据,这一点至关重要。这包括应用人工智能和机器学习来自动化注释和规模科学分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信